The College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM 88003, U.S.A.
Biosens Bioelectron. 2015 Dec 15;74:989-95. doi: 10.1016/j.bios.2015.07.075. Epub 2015 Jul 31.
Cathodic catalyst is one of the key materials in microbial fuel cell (MFC). The addition of non-stoichiometric nano Fe3O4 in activated carbon (NSFe3O4/AC) air cathode was beneficial to boosting the charge transfer of the cathode accompanying with the enhancement of power performance in MFC. The air cathode modified by NSFe3O4 (5%, Wt%) increased the maximum power density by 83.3% from 780 mW/m(2) to 1430 mW/m(2) compared with bare air cathode. The modified cathodes showed enhanced electrochemical properties and appeared the maximum exchange current density of 18.71×10(-4) A/cm(2) for oxygen reduction reaction. The mechanism of oxygen reduction for the NSFe3O4/AC catalyst was a 4-electron pathway. The oxygen vacancy of the NSFe3O4 played a crucial role in electrochemical catalytic activity. The great catalytic performance made NSFe3O4 have a promising outlook applied in MFC.
在微生物燃料电池(MFC)中,阴极催化剂是关键材料之一。在活性炭(AC)空气阴极中添加非化学计量纳米 Fe3O4(NSFe3O4/AC)有助于提高阴极的电荷转移,同时增强 MFC 的功率性能。与裸空气阴极相比,添加 5%(重量%)NSFe3O4 的空气阴极将最大功率密度从 780 mW/m(2)提高到 1430 mW/m(2),提高了 83.3%。改性阴极表现出增强的电化学性能,对于氧还原反应出现最大交换电流密度为 18.71×10(-4) A/cm(2)。NSFe3O4/AC 催化剂的氧还原反应机制为 4 电子途径。NSFe3O4 的氧空位在电化学催化活性中起着至关重要的作用。其卓越的催化性能使得 NSFe3O4 在 MFC 中有广阔的应用前景。