Kopečná Jana, Pilný Jan, Krynická Vendula, Tomčala Aleš, Kis Mihály, Gombos Zoltan, Komenda Josef, Sobotka Roman
Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.).
Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.)
Plant Physiol. 2015 Oct;169(2):1307-17. doi: 10.1104/pp.15.01150. Epub 2015 Aug 12.
The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsA mutant of Synechocystis sp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsA mutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.
带负电荷的脂质磷脂酰甘油(PG)在光合膜的总脂质中占比高达10%,在蓝藻中其缺失伴随着叶绿素(Chl)的消耗。事实上,对不能合成PG的集胞藻属PCC 6803菌株的PG缺失型ΔpgsA突变体进行放射性标记,证明了由于5-氨基乙酰丙酸和原叶绿素酸酯形成受限导致Chl生物合成受到抑制。尽管该突变体积聚了叶绿素酸酯,即Chl的最后一个前体,但我们表明它源自现有Chl的脱植基作用,而非Chl生物合成受阻。PG缺失时从头合成的Chl缺乏,同时单体和三聚体光系统I(PSI)复合物的生物合成显著减弱,尽管细胞含量下降仅在三聚体形式中表现出来。然而,我们对因缺乏PsaL亚基而没有三聚体PSI的ΔpgsA突变体的分析表明,单体PSI的实际稳定性是PSI三聚体解体的结果。有趣的是,三聚体PSI的缺失伴随着与新合成的光系统II的CP43亚基相关的单体PSI的积累。我们得出结论,PG的缺失导致Chl生物合成途径受到抑制,这损害了PSI的合成,尽管从降解的Chl蛋白中释放出的叶绿素酸酯有所积累。基于对PG在原核生物中作用的了解,我们推测Chl和PSI复合物的合成共定位在一个需要PG来维持完整性的膜微区中。