Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
Institute of Microbiology, Czech Academy of Sciences, 37901 Třeboň, Czech Republic.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2024633118.
Chlorophylls (Chls) are essential cofactors for photosynthesis. One of the least understood steps of Chl biosynthesis is formation of the fifth (E) ring, where the red substrate, magnesium protoporphyrin IX monomethyl ester, is converted to the green product, 3,8-divinyl protochlorophyllide In oxygenic phototrophs, this reaction is catalyzed by an oxygen-dependent cyclase, consisting of a catalytic subunit (AcsF/CycI) and an auxiliary protein, Ycf54. Deletion of Ycf54 impairs cyclase activity and results in severe Chl deficiency, but its exact role is not clear. Here, we used a Δ mutant of the model cyanobacterium sp. PCC 6803 to generate suppressor mutations that restore normal levels of Chl. Sequencing Δ revertants identified a single D219G amino acid substitution in CycI and frameshifts in slr1916, which encodes a putative esterase. Introduction of these mutations to the original Δ mutant validated the suppressor effect, especially in combination. However, comprehensive analysis of the Δ suppressor strains revealed that the D219G-substituted CycI is only partially active and its accumulation is misregulated, suggesting that Ycf54 controls both the level and activity of CycI. We also show that Slr1916 has Chl dephytylase activity in vitro and its inactivation up-regulates the entire Chl biosynthetic pathway, resulting in improved cyclase activity. Finally, large-scale bioinformatic analysis indicates that our laboratory evolution of Ycf54-independent CycI mimics natural evolution of AcsF in low-light-adapted ecotypes of the oceanic cyanobacteria , which lack Ycf54, providing insight into the evolutionary history of the cyclase enzyme.
叶绿素(Chls)是光合作用的必需辅因子。叶绿素生物合成中了解最少的步骤之一是第五(E)环的形成,在该步骤中,红色底物,镁原卟啉 IX 单甲酯,被转化为绿色产物,3,8-二乙烯基原叶绿酸酯。在产氧光合作用生物中,该反应由一个依赖于氧气的环化酶催化,该酶由一个催化亚基(AcsF/CycI)和一个辅助蛋白 Ycf54 组成。Ycf54 的缺失会损害环化酶的活性,导致严重的叶绿素缺乏,但它的确切作用尚不清楚。在这里,我们使用模型蓝藻 sp. PCC 6803 的 Δ突变体来产生恢复正常叶绿素水平的抑制突变。对 Δ回复突变体进行测序,鉴定出 CycI 中的单个 D219G 氨基酸取代和编码假定酯酶的 slr1916 的移码。将这些突变引入原始的 Δ突变体中验证了抑制作用,尤其是在组合时。然而,对 Δ抑制株系的全面分析表明,D219G 取代的 CycI 仅部分活跃,其积累受到错误调控,这表明 Ycf54 控制 CycI 的水平和活性。我们还表明,Slr1916 在体外具有脱植基叶绿素酶活性,其失活可上调整个叶绿素生物合成途径,从而提高环化酶活性。最后,大规模生物信息学分析表明,我们实验室对 Ycf54 非依赖性 CycI 的进化模拟了海洋蓝藻低光适应型生态型中 AcsF 的自然进化,后者缺乏 Ycf54,为环化酶酶的进化历史提供了深入的了解。