Bolouri Hayde, Zetterberg Henrik
Mild traumatic brain injury (mTBI) or concussion, the most common form of brain injury, results in a complex cascade of injurious and reparative events in the brain, and is not always as mild in nature as the mTBI term would imply. Over the last decades it has become clear that repeated mTBIs may give rise to chronic and sometimes progressive brain changes that may lead to a broad range of psychiatric and neurological symptoms. Presently, there is a convention to categorize TBI into three groups: mild, moderate, and severe, based on initial presentation. At the more severe end of the injury spectrum, the correlation between initial injury severity rating and various outcome measures is relatively robust. At the milder end of the spectrum, this correlation is less tight, and over the last 100 years this has generated confusion with regards to the typical presentation and outcome of milder injuries. For a successful translation of basic science knowledge to the clinic to occur, further techniques and models are needed that better reflect mTBI in humans. The purpose of this chapter is to overview the underlying evidence for the necessity of animal models for mTBI in sports and other high risk activities such as military service. Traumatic brain injury (TBI) occurs when an external physical force impacts the head, either causing the brain to move within the intact skull or damaging the brain by fracturing the skull (McCrory et al., 2005). Various types and levels of impact damage the brain differently. TBI may acutely alter the state of consciousness and, with time, impair cognitive abilities, behavior, and/or physical function. Annually, around 1.7 million new cases of TBI are reported in the United States (www.cdc.gov/TraumaticBrainInjury, September 2013). Mild TBI constitutes most of these; an estimated 300,000 cases take place in the setting of sports and recreation, 95% being mTBI or concussion. In Europe, these cases have reached 60,000 deaths annually, and hospitalized TBI combined was estimated to be 235/100,000 inhabitants (Marklund and Hillered, 2011); the global magnitude of TBI is unknown, but available data suggest that the number of TBI victims globally is rising sharply (Corrigan et al., 2010; Maas et al., 2008; Tagliaferri et al., 2006). TBI is not only a single pathophysiological phenomenon, but rather a complex disease process that gives rise to structural and functional damage from both primary and secondary injury mechanisms (Masel and DeWitt, 2010). The primary injury is the result of the immediate mechanical disruption of brain tissue that occurs at the time of exposure to the external force and includes contusion, damage to blood vessels (hemorrhage), and axonal shearing, in which the axons of neurons are stretched and wavering (Cernak, 2005; Gaetz, 2004). Secondary injury develops over minutes to months after the primary injury and is the result of cascades of metabolic, cellular, and molecular events that ultimately lead to brain cell death, tissue damage, and atrophy (Bramlett and Dietrich, 2007; Thompson et al., 2005). Acute assessment of injury severity is critical for the diagnosis, management, and prognosis of TBI. Currently, in TBI clinical trials, the Glasgow Coma Scale is the primary means for initial patient classification, and the Glasgow Outcome Scale or its eight-point extended version remains a primary method for assessing outcomes (Lu et al., 2010; Maas and Lingsma, 2008). In contrast, much less is known about the pathophysiology of mTBI. MTBI is characterized by a short deterioration of neural function that may or may not involve loss of consciousness (Kelly, 1997). It may result from neuropathological changes, but some believe that the acute clinical symptoms reflect a functional disorder rather than a structural damage. Generally, mTBI is associated with normal structural neuroimaging (Aubry et al., 2002; McCrory et al., 2005), but recent biomarker studies challenge the view that neurons and axons often stay intact during mTBI (Neselius et al., 2012, 2013; Zetterberg et al., 2006, 2009). In the textbook (Silver, 2010) the terms “concussion” and “mTBI” are used interchangeably. At the fourth concussion conference (McCrory et al., 2013), however, a distinction between concussion and mTBI was proposed, noting that mTBI refers to “different constructs and should not be used interchangeably” suggesting that the concussion may be followed by complete recovery, whereas mTBI may manifest persistent symptoms (McCrory et al., 2013). Regardless of the different proposals around the terminology of concussion, the most important reason for developing animal models of TBI is to open new therapeutic windows. Developments and/or modifications of new and existing animal models of TBI provide opportunities for new therapeutic strategies and to cross the therapeutic gap between preclinical studies and patient care. However, promising results from preclinical studies of potential TBI treatments have not been interpreted into successful outcomes in clinical trials. The pathophysiological heterogeneity observed in patients with TBI, the lack of adequate pharmacokinetic analyses to determine optimal doses of potential therapies, and the administration of compounds outside the therapeutic window may have led to the clinical trial failures (Schouten, 2007). The pathophysiological heterogeneity observed in patients with TBI may arise from the location, nature, and severity of the primary injury and the effects of other factors and preexisting conditions, including but not restricted to age, health, sex, medication, alcohol and drug use, and genetics (Margulies and Hicks, 2009). Animal models of TBI are each designed to produce a relatively homogeneous type of injury, with age, sex, genetic background, and the injury parameters all well controlled. Thus, any one animal model may not be able to fully recapitulate all the aspects of secondary injury development that are observed in human TBI, and this may in part explain why drugs that showed promise in preclinical studies failed in clinical studies (Marklund et al., 2006). Unquestionably, however, animal models have been fundamental for studying the biomechanical, cellular, and molecular aspects of human TBI because of the limitation of clinical setting as well as for developing and characterizing novel therapeutic interventions. To achieve new therapeutic finding and based on the study design, appropriate animal models should be selected or modified.
轻度创伤性脑损伤(mTBI)或脑震荡是最常见的脑损伤形式,会在大脑中引发一系列复杂的损伤和修复事件,其本质并不总是像“轻度创伤性脑损伤”这个术语所暗示的那么轻微。在过去几十年里,人们逐渐清楚地认识到,反复发生的mTBI可能会导致慢性且有时是进行性的脑部变化,进而引发一系列广泛的精神和神经症状。目前,根据初始表现,TBI通常被分为三组:轻度、中度和重度。在损伤谱的较严重一端,初始损伤严重程度评级与各种预后指标之间的相关性相对较强。而在较轻一端,这种相关性则不那么紧密,在过去的100年里,这导致了对于较轻损伤的典型表现和预后的困惑。为了成功地将基础科学知识转化为临床应用,需要进一步的技术和模型,以便更好地反映人类的mTBI情况。本章的目的是概述在体育和其他高风险活动(如军事服役)中使用mTBI动物模型的必要性的潜在证据。当外部物理力撞击头部时,就会发生创伤性脑损伤(TBI),这要么会导致大脑在完整的颅骨内移动,要么会通过颅骨骨折而损伤大脑(McCrory等人,2005年)。各种类型和程度的撞击对大脑的损伤方式各不相同。TBI可能会急性改变意识状态,并随着时间的推移损害认知能力、行为和/或身体功能。在美国,每年大约报告170万例新的TBI病例(www.cdc.gov/TraumaticBrainInjury,2013年9月)。其中大多数是轻度TBI;估计有30万例发生在体育和娱乐活动中,95%为mTBI或脑震荡。在欧洲,这些病例每年导致6万人死亡,据估计,住院的TBI患者总数为每10万居民235例(Marklund和Hillered,2011年);全球TBI的规模尚不清楚,但现有数据表明,全球TBI受害者的数量正在急剧上升(Corrigan等人,2010年;Maas等人,2008年;Tagliaferri等人,2006年)。TBI不仅是一种单一的病理生理现象,更是一个复杂的疾病过程,它会通过原发性和继发性损伤机制导致结构和功能损伤(Masel和DeWitt,2010年)。原发性损伤是在暴露于外力时脑组织立即发生机械性破坏的结果,包括挫伤、血管损伤(出血)和轴突剪切,其中神经元的轴突会被拉伸并摆动(Cernak,2005年;Gaetz,2004年)。继发性损伤在原发性损伤后数分钟至数月内发展,是一系列代谢、细胞和分子事件的结果,最终导致脑细胞死亡、组织损伤和萎缩(Bramlett和Dietrich,2007年;Thompson等人,2005年)。对损伤严重程度的急性评估对于TBI的诊断、管理和预后至关重要。目前,在TBI临床试验中,格拉斯哥昏迷量表是对患者进行初始分类的主要手段,而格拉斯哥预后量表或其八点扩展版本仍然是评估预后的主要方法(Lu等人,2010年;Maas和Lingsma,2008年)。相比之下,人们对mTBI的病理生理学了解较少。mTBI 的特点是神经功能短暂恶化,可能涉及也可能不涉及意识丧失(Kelly,1997年)。它可能是由神经病理学变化引起的,但一些人认为急性临床症状反映的是功能障碍而非结构损伤。一般来说,mTBI与正常的结构神经影像学表现相关(Aubry等人,2002年;McCrory等人,2005年),但最近的生物标志物研究对mTBI期间神经元和轴突通常保持完整的观点提出了挑战(Neselius等人,2012年、2013年;Zetterberg等人,2006年、2009年)。在教科书中(Silver,2010年),“脑震荡”和“mTBI”这两个术语可以互换使用。然而,在第四届脑震荡会议上(McCrory等人,2013年),有人提出了脑震荡和mTBI之间的区别,指出mTBI指的是“不同的概念,不应互换使用”,这表明脑震荡可能会完全恢复,而mTBI可能会出现持续症状(McCrory等人,2013年)。无论关于脑震荡术语的不同提议如何,开发TBI动物模型的最重要原因是打开新的治疗窗口。TBI新的和现有的动物模型的开发和/或改进为新的治疗策略提供了机会,并跨越了临床前研究与患者护理之间的治疗差距。然而,潜在TBI治疗的临床前研究中取得的有希望的结果尚未转化为临床试验中的成功结果。在TBI患者中观察到的病理生理异质性、缺乏足够的药代动力学分析来确定潜在疗法的最佳剂量,以及在治疗窗口之外给药可能导致了临床试验的失败(Schouten,2007年)。在TBI患者中观察到的病理生理异质性可能源于原发性损伤的位置、性质和严重程度以及其他因素和既往疾病的影响,包括但不限于年龄、健康状况、性别、药物治疗、酒精和药物使用以及遗传学(Margulies和Hicks,2009年)。TBI动物模型的设计目的是产生相对同质的损伤类型,年龄、性别、遗传背景和损伤参数都得到了很好的控制。因此,任何一种动物模型可能都无法完全重现人类TBI中观察到的继发性损伤发展的所有方面,这可能部分解释了为什么在临床前研究中显示有希望的药物在临床研究中失败了(Marklund等人,2006年)。然而,毫无疑问,由于临床环境的限制以及开发和表征新型治疗干预措施的需要,动物模型对于研究人类TBI的生物力学、细胞和分子方面至关重要。为了获得新的治疗发现并基于研究设计,应该选择或改进合适的动物模型。