Suppr超能文献

中枢神经系统创伤和神经精神疾病中的自身抗体:新一代生物标志物

Autoantibodies in CNS Trauma and Neuropsychiatric Disorders: A New Generation of Biomarkers

作者信息

Kobeissy Firas, Moshourab Rabih A

Abstract

Central nervous system (CNS) trauma is a growing public health concern resulting from various types of cerebral insults, leading to acute neurological and non-neurological manifestations that can leave life-long consequences. To date, there are no standardized therapeutic and management protocols dealing with brain trauma. Current research is uncovering novel biomarkers that can aid in diagnosis, management and therapy. Current status of brain injury biomarkers includes the presence, absence or altered expression levels of certain neural (neuronal astrocytic or glial) related genes/proteins, protein degradation products and microRNAs which are discussed in different chapters of this book. Recently, there has been an increased interest in the new emerging role of autoantibodies—which have been long identified—as new generation biomarkers in the areas of neurotrauma, neuropsychiatric disorders and neurotoxicity. In this chapter, we will discuss the genesis and implications of autoantibodies in neurotrauma; focusing on the area of spinal cord injury (SCI) and shedding light on recent application in traumatic brain injury (TBI). In addition, the potential pathogenic mechanistic role of autoantibodies in the areas of Autism spectrum disorder (ASD) and neurotoxicity will be evaluated as this may reflect on the neural injury observed in brain trauma. The key value of these new generation biomarkers is that—unlike their corresponding autoantigens that may serve as acute markers of injury—these identified autoantibodies represent long-lasting, chronic signature biomarkers that can be associated with advanced chronic stages of injury sequelae. Such work has the potential to be applied in the fields of neurotrauma and neuropsychiatric fields that may reflect underlying mechanisms and can be utilized for diagnosis, staging and treatment guidance as well as be the target for therapy. Autoimmune diseases, characterized by the presence of autoantibodies, affect about 5%–7% of the world’s population; 3% of these are brain reactive autoantibodies with no overt effects (Diamond et al., 2013; Fairweather and Rose, 2004; National Institutes of Health Autoimmune Diseases Coordinating Committee Report, 2002). These brain-specific autoantibodies have a restricted access to our brain tissues unless under pathologic conditions (Diamond et al., 2013). Autoimmune response mechanisms have been observed in a number of CNS disorders involving multiple sclerosis (MS), paraneoplastic syndromes, brain trauma, and dementia-related disorders (Cross et al., 2001; Popovic et al., 1998; Sjogren and Wallin, 2001). A number of neurological disorders are associated with blood–brain barrier (BBB) disruption or increased permeability observed in Alzheimer disease (AD), stroke, TBI, and schizophrenia (Fazio et al., 2004; Marchi et al., 2003, 2004; Neuwelt et al., 2011). Injury to the BBB such as in brain injury may lead to the release of intracellular proteins either intact or proteolytic fragments from protease activation into the cerebrospinal fluid (CSF) or blood stream. The leakage of such entities into the circulation may lead to the formation of autoantibodies that have been defined as brain-reactive antibodies that recognize self- (auto-) antigens i.e., an antigen that is normally found in a subject tissue or cell or organelles. For a schematic representation of the above mechanism, please refer to Figure 29.1. Several hypotheses have been proposed for the development of these brain-specific autoantibodies and it has been argued whether their presence contributes to the pathogenic outcome of the disease in question or maybe they are epiphenomenal in nature. Recent studies by Davies and Skoda have indicated that patients with SCI or TBI would develop autoantibodies that target a number of CNS self-antigens including GM1 gangliosides, myelin-associated glycoprotein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptors, and β-III-tubulin and nuclear antigens (Davies et al., 2007; Skoda et al., 2006). Based on the data presented by Ankeny in the area of SCI and by Zhang and Marchi in the areas of TBI (Ankeny and Popovich, 2010; Marchi et al., 2013a; Zhang et al., 2014), it is reasonable to regard the presence of an actual anti-brain reactivity as a potential threat to brain tissue integrity (Rudehill et al., 2006). As such, there is an increased interest in this newly discovered mine of biomarkers for several reasons. Autoantibodies can be correlated to disease activity/severity and are shown to be related to particular clinical manifestation or tissue injury presenting years before disease onset and may constitute potential biomarkers of the disease. Autoantibodies act as a predictive marker of disease occurrence and valuable indicators for therapeutic response to biologics as well as to side effects. These autoantibodies can be a useful tool for diagnosis and management relevant to organ-specific or non–organ-specific disorders (Tron, 2014). Several brain-derived autoantibodies are presented in Table 29.1.

摘要

中枢神经系统(CNS)创伤是一个日益严重的公共卫生问题,它由各种类型的脑部损伤引起,会导致急性神经和非神经表现,并可能产生终身后果。迄今为止,尚无针对脑损伤的标准化治疗和管理方案。当前的研究正在发现有助于诊断、管理和治疗的新型生物标志物。脑损伤生物标志物的现状包括某些神经(神经元、星形胶质细胞或神经胶质)相关基因/蛋白质、蛋白质降解产物和微小RNA的存在、缺失或表达水平改变,本书的不同章节对此进行了讨论。最近,人们对自身抗体新出现的作用越来越感兴趣,长期以来已知自身抗体在神经创伤、神经精神疾病和神经毒性领域作为新一代生物标志物。在本章中,我们将讨论神经创伤中自身抗体的产生及其影响;重点关注脊髓损伤(SCI)领域,并阐明其在创伤性脑损伤(TBI)中的最新应用。此外,还将评估自身抗体在自闭症谱系障碍(ASD)和神经毒性领域潜在的致病机制作用,因为这可能反映脑创伤中观察到的神经损伤。这些新一代生物标志物的关键价值在于——与它们相应的自身抗原不同,自身抗原可能作为损伤的急性标志物——这些已鉴定的自身抗体代表持久的、慢性特征性生物标志物,可与损伤后遗症的晚期慢性阶段相关联。此类研究有可能应用于神经创伤和神经精神领域,这可能反映潜在机制,并可用于诊断、分期和治疗指导,以及作为治疗靶点。自身免疫性疾病以自身抗体的存在为特征,影响着全球约5% - 7%的人口;其中3%是脑反应性自身抗体,但无明显影响(戴蒙德等人,2013年;费尔韦瑟和罗斯,2004年;美国国立卫生研究院自身免疫性疾病协调委员会报告,2002年)。这些脑特异性自身抗体除非在病理条件下,否则难以进入我们的脑组织(戴蒙德等人,2013年)。在包括多发性硬化症(MS)、副肿瘤综合征、脑创伤和痴呆相关疾病在内的多种中枢神经系统疾病中都观察到了自身免疫反应机制(克罗斯等人,2001年;波波维奇等人,1998年;舍格伦和瓦林,2001年)。在阿尔茨海默病(AD)、中风、TBI和精神分裂症中观察到许多神经系统疾病与血脑屏障(BBB)破坏或通透性增加有关(法齐奥等人,2004年;马尔基等人,2003年、2004年;诺伊韦尔特等人,2011年)。脑损伤等对血脑屏障的损伤可能导致细胞内蛋白质完整释放或蛋白酶激活产生的蛋白水解片段进入脑脊液(CSF)或血流。这些物质泄漏到循环系统中可能导致自身抗体的形成,这些自身抗体被定义为识别自身(自身)抗原的脑反应性抗体,即通常在受试者组织、细胞或细胞器中发现的抗原。有关上述机制的示意图,请参见图29.1。对于这些脑特异性自身抗体的产生,已经提出了几种假说,并且有人争论它们的存在是否会导致相关疾病的致病结果,或者它们在本质上可能只是附带现象。戴维斯和斯科达最近的研究表明,SCI或TBI患者会产生针对多种中枢神经系统自身抗原的自身抗体,包括GM1神经节苷脂、髓鞘相关糖蛋白、α - 氨基 - 3 - 羟基 - 5 - 甲基 - 4 - 异恶唑丙酸(AMPA)和N - 甲基 - D - 天冬氨酸(NMDA)谷氨酸受体,以及β - III - 微管蛋白和核抗原(戴维斯等人,2007年;斯科达等人,2006年)。根据安克尼在SCI领域以及张和马尔基在TBI领域提供的数据(安克尼和波波维奇,2010年;马尔基等人,2013a;张等人,2014年),有理由认为实际的抗脑反应性的存在对脑组织完整性构成潜在威胁(鲁德希尔等人,2006年)。因此,出于几个原因,人们对这个新发现的生物标志物宝库越来越感兴趣。自身抗体可以与疾病活动/严重程度相关,并且显示与疾病发作前数年出现的特定临床表现或组织损伤有关,可能构成疾病的潜在生物标志物。自身抗体可作为疾病发生的预测标志物以及对生物制剂治疗反应和副作用的有价值指标。这些自身抗体可以成为诊断和管理与器官特异性或非器官特异性疾病相关的有用工具(特龙,2014年)。表29.1列出了几种脑源性自身抗体。

相似文献

2
Seropositive Neuromyelitis Optica in a Case of Undiagnosed Ankylosing Spondylitis: A Neuro-Rheumatological Conundrum.
Qatar Med J. 2022 Jul 7;2022(3):29. doi: 10.5339/qmj.2022.29. eCollection 2022.
5
Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease.
J Neurovirol. 2019 Oct;25(5):702-709. doi: 10.1007/s13365-018-0695-4. Epub 2019 Jan 4.
6
Autoantibodies in traumatic brain injury and central nervous system trauma.
Neuroscience. 2014 Dec 5;281:16-23. doi: 10.1016/j.neuroscience.2014.08.045. Epub 2014 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验