Cremaschi Paolo, Carriero Roberta, Astrologo Stefania, Colì Caterina, Lisa Antonella, Parolo Silvia, Bione Silvia
Computational Biology Unit, Institute of Molecular Genetics, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy.
Biomed Res Int. 2015;2015:146250. doi: 10.1155/2015/146250. Epub 2015 Jul 27.
In the past few years, the role of long noncoding RNAs (lncRNAs) in tumor development and progression has been disclosed although their mechanisms of action remain to be elucidated. An important contribution to the comprehension of lncRNAs biology in cancer could be obtained through the integrated analysis of multiple expression datasets. However, the growing availability of public datasets requires new data mining techniques to integrate and describe relationship among data. In this perspective, we explored the powerness of the Association Rule Mining (ARM) approach in gene expression data analysis. By the ARM method, we performed a meta-analysis of cancer-related microarray data which allowed us to identify and characterize a set of ten lncRNAs simultaneously altered in different brain tumor datasets. The expression profiles of the ten lncRNAs appeared to be sufficient to distinguish between cancer and normal tissues. A further characterization of this lncRNAs signature through a comodulation expression analysis suggested that biological processes specific of the nervous system could be compromised.
在过去几年中,长链非编码RNA(lncRNA)在肿瘤发生和发展中的作用已被揭示,尽管其作用机制仍有待阐明。通过对多个表达数据集的综合分析,可能会对癌症中lncRNA生物学的理解做出重要贡献。然而,公共数据集的日益增多需要新的数据挖掘技术来整合和描述数据之间的关系。从这个角度来看,我们探索了关联规则挖掘(ARM)方法在基因表达数据分析中的效能。通过ARM方法,我们对癌症相关的微阵列数据进行了荟萃分析,这使我们能够识别和表征一组在不同脑肿瘤数据集中同时发生改变的10种lncRNA。这10种lncRNA的表达谱似乎足以区分癌症组织和正常组织。通过共调节表达分析对这种lncRNA特征进行的进一步表征表明,神经系统特有的生物学过程可能会受到影响。