Del Ferraro Gino, Aurell Erik
Department of Computational Biology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
ACCESS Linnaeus Centre, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):010102. doi: 10.1103/PhysRevE.92.010102. Epub 2015 Jul 21.
A method to approximately close the dynamic cavity equations for synchronous reversible dynamics on a locally treelike topology is presented. The method builds on (a) a graph expansion to eliminate loops from the normalizations of each step in the dynamics and (b) an assumption that a set of auxilary probability distributions on histories of pairs of spins mainly have dependencies that are local in time. The closure is then effectuated by projecting these probability distributions on n-step Markov processes. The method is shown in detail on the level of ordinary Markov processes (n=1) and outlined for higher-order approximations (n>1). Numerical validations of the technique are provided for the reconstruction of the transient and equilibrium dynamics of the kinetic Ising model on a random graph with arbitrary connectivity symmetry.
提出了一种在局部树状拓扑结构上近似封闭同步可逆动力学的动态腔方程的方法。该方法基于:(a) 一种图形展开,以消除动力学中每一步归一化中的循环;(b) 一个假设,即一组关于自旋对历史的辅助概率分布主要具有时间上局部的依赖性。然后通过将这些概率分布投影到n步马尔可夫过程上来实现封闭。该方法在普通马尔可夫过程(n = 1)层面进行了详细展示,并针对高阶近似(n>1)进行了概述。针对具有任意连通性对称性的随机图上的动力学伊辛模型的瞬态和平衡动力学重建,提供了该技术的数值验证。