Suppr超能文献

一种用于随机逻辑模型矩封闭的导数匹配方法。

A derivative matching approach to moment closure for the stochastic logistic model.

作者信息

Singh Abhyudai, Hespanha João Pedro

机构信息

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93101, USA.

出版信息

Bull Math Biol. 2007 Aug;69(6):1909-25. doi: 10.1007/s11538-007-9198-9. Epub 2007 Apr 19.

Abstract

Continuous-time birth-death Markov processes serve as useful models in population biology. When the birth-death rates are nonlinear, the time evolution of the first n order moments of the population is not closed, in the sense that it depends on moments of order higher than n. For analysis purposes, the time evolution of the first n order moments is often made to be closed by approximating these higher order moments as a nonlinear function of moments up to order n, which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model. We obtain the moment closure function by first assuming a certain separable form for it, and then matching time derivatives of the exact (not closed) moment equations with that of the approximate (closed) equations for some initial time and set of initial conditions. The separable structure ensures that the steady-state solutions for the approximate equations are unique, real and positive, while the derivative matching guarantees a good approximation, at least locally in time. Explicit formulas to construct these moment closure functions for arbitrary order of truncation n are provided with higher values of n leading to better approximations of the actual moment dynamics. A host of other moment closure functions previously proposed in the literature are also investigated. Among these we show that only the ones that achieve derivative matching provide a close approximation to the exact solution. Moreover, we improve the accuracy of several previously proposed moment closure functions by forcing derivative matching.

摘要

连续时间生死马尔可夫过程在种群生物学中是有用的模型。当生死率是非线性时,种群前(n)阶矩的时间演化不是封闭的,即它依赖于高于(n)阶的矩。出于分析目的,前(n)阶矩的时间演化通常通过将这些高阶矩近似为直至(n)阶矩的非线性函数来使其封闭,我们将此称为矩封闭函数。本文针对随机逻辑斯谛模型给出了一种构建任意阶矩封闭函数的系统方法。我们通过首先假设其具有某种可分离形式来获得矩封闭函数,然后在某个初始时间和初始条件集下,将精确(非封闭)矩方程的时间导数与近似(封闭)方程的时间导数进行匹配。可分离结构确保了近似方程的稳态解是唯一、实且正的,而导数匹配保证了至少在局部时间上有良好的近似。给出了用于构建任意截断阶数(n)的这些矩封闭函数的显式公式,(n)值越高,对实际矩动态的近似越好。还研究了文献中先前提出的许多其他矩封闭函数。在这些函数中,我们表明只有那些实现导数匹配的函数才能提供与精确解的近似。此外,我们通过强制导数匹配提高了几个先前提出的矩封闭函数的精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验