Suppr超能文献

Wave-turbulence description of interacting particles: Klein-Gordon model with a Mexican-hat potential.

作者信息

Gallet Basile, Nazarenko Sergey, Dubrulle Bérengère

机构信息

Laboratoire SPHYNX, Service de Physique de l'État Condensé, DSM, CEA Saclay, CNRS UMR 3680, 91191 Gif-sur-Yvette, France.

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012909. doi: 10.1103/PhysRevE.92.012909. Epub 2015 Jul 10.

Abstract

In field theory, particles are waves or excitations that propagate on the fundamental state. In experiments or cosmological models, one typically wants to compute the out-of-equilibrium evolution of a given initial distribution of such waves. Wave turbulence deals with out-of-equilibrium ensembles of weakly nonlinear waves, and is therefore well suited to address this problem. As an example, we consider the complex Klein-Gordon equation with a Mexican-hat potential. This simple equation displays two kinds of excitations around the fundamental state: massive particles and massless Goldstone bosons. The former are waves with a nonzero frequency for vanishing wave number, whereas the latter obey an acoustic dispersion relation. Using wave-turbulence theory, we derive wave kinetic equations that govern the coupled evolution of the spectra of massive and massless waves. We first consider the thermodynamic solutions to these equations and study the wave condensation transition, which is the classical equivalent of Bose-Einstein condensation. We then focus on nonlocal interactions in wave-number space: we study the decay of an ensemble of massive particles into massless ones. Under rather general conditions, these massless particles accumulate at low wave number. We study the dynamics of waves coexisting with such a strong condensate, and we compute rigorously a nonlocal Kolmogorov-Zakharov solution, where particles are transferred nonlocally to the condensate, while energy cascades towards large wave numbers through local interactions. This nonlocal cascading state constitutes the intermediate asymptotics between the initial distribution of waves and the thermodynamic state reached in the long-time limit.

摘要

相似文献

1
Wave-turbulence description of interacting particles: Klein-Gordon model with a Mexican-hat potential.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012909. doi: 10.1103/PhysRevE.92.012909. Epub 2015 Jul 10.
2
Renormalized waves and thermalization of the Klein-Gordon equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046217. doi: 10.1103/PhysRevE.83.046217. Epub 2011 Apr 25.
3
Condensation of classical nonlinear waves.
Phys Rev Lett. 2005 Dec 31;95(26):263901. doi: 10.1103/PhysRevLett.95.263901. Epub 2005 Dec 22.
4
Kinetic approach to a relativistic Bose-Einstein condensate.
Phys Rev E. 2016 Mar;93(3):032131. doi: 10.1103/PhysRevE.93.032131. Epub 2016 Mar 16.
5
Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics.
Opt Express. 2007 Jul 9;15(14):9063-83. doi: 10.1364/oe.15.009063.
6
Turbulence of Weak Gravitational Waves in the Early Universe.
Phys Rev Lett. 2017 Dec 1;119(22):221101. doi: 10.1103/PhysRevLett.119.221101. Epub 2017 Nov 28.
7
Emergence of a turbulent cascade in a quantum gas.
Nature. 2016 Nov 3;539(7627):72-75. doi: 10.1038/nature20114.
8
Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum?
Phys Rev Lett. 2006 Jul 14;97(2):025503. doi: 10.1103/PhysRevLett.97.025503.
9
Dramatic Acceleration of Wave Condensation Mediated by Disorder in Multimode Fibers.
Phys Rev Lett. 2019 Mar 29;122(12):123902. doi: 10.1103/PhysRevLett.122.123902.
10
Violation of the spin-statistics theorem and the bose-einstein condensation of particles with half-integer spin.
Phys Rev Lett. 2015 Feb 6;114(5):055702. doi: 10.1103/PhysRevLett.114.055702. Epub 2015 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验