Connaughton Colm, Josserand Christophe, Picozzi Antonio, Pomeau Yves, Rica Sergio
Laboratoire de Physique Statistique, ENS-CNRS, Paris, France.
Phys Rev Lett. 2005 Dec 31;95(26):263901. doi: 10.1103/PhysRevLett.95.263901. Epub 2005 Dec 22.
We study the formation of a large-scale coherent structure (a condensate) in classical wave equations by considering the defocusing nonlinear Schrödinger equation as a representative model. We formulate a thermodynamic description of the classical condensation process by using a wave turbulence theory with ultraviolet cutoff. In three dimensions the equilibrium state undergoes a phase transition for sufficiently low energy density, while no transition occurs in two dimensions, in complete analogy with standard Bose-Einstein condensation in quantum systems. On the basis of a modified wave turbulence theory, we show that the nonlinear interaction makes the transition to condensation subcritical. The theory is in quantitative agreement with the numerical integration of the nonlinear Schrödinger equation.
我们通过将散焦非线性薛定谔方程作为一个代表性模型,研究经典波动方程中大规模相干结构(凝聚体)的形成。我们利用带有紫外截断的波湍流理论,对经典凝聚过程进行了热力学描述。在三维空间中,对于足够低的能量密度,平衡态会经历相变,而在二维空间中则不会发生相变,这与量子系统中的标准玻色 - 爱因斯坦凝聚完全类似。基于一种改进的波湍流理论,我们表明非线性相互作用使得向凝聚的转变成为亚临界的。该理论与非线性薛定谔方程的数值积分在定量上是一致的。