Jung Sung Chul, Jung Dae Soo, Choi Jang Wook, Han Young-Kyu
†Department of Energy and Materials Engineering and Advanced Energy and Electronic Materials Research Center, Dongguk University-Seoul, Seoul 100-715, Republic of Korea.
‡Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejon 305-701, Republic of Korea.
J Phys Chem Lett. 2014 Apr 3;5(7):1283-8. doi: 10.1021/jz5002743. Epub 2014 Mar 26.
Despite the exceptionally large capacities in Li ion batteries, Si has been considered inappropriate for applications in Na ion batteries. We report an atomic-level study on the applicability of a Si anode in Na ion batteries using ab initio molecular dynamics simulations. While crystalline Si is not suitable for alloying with Na atoms, amorphous Si can accommodate 0.76 Na atoms per Si atom, corresponding to a specific capacity of 725 mA h g(-1). Bader charge analyses reveal that the sodiation of an amorphous Si electrode continues until before the local Na-rich clusters containing neutral Na atoms are formed. The amorphous Na0.76Si phase undergoes a volume expansion of 114% and shows a Na diffusivity of 7 × 10(-10) cm(2) s(-1) at room temperature. Overall, the amorphous Si phase turns out quite attractive in performance compared to other alloy-type anode materials. This work suggests that amorphous Si might be a competitive candidate for Na ion battery anodes.
尽管锂离子电池具有超大的容量,但硅一直被认为不适用于钠离子电池。我们使用从头算分子动力学模拟对硅阳极在钠离子电池中的适用性进行了原子级研究。虽然晶体硅不适合与钠原子合金化,但非晶硅每个硅原子可以容纳0.76个钠原子,对应于725 mA h g(-1)的比容量。巴德电荷分析表明,非晶硅电极的钠化过程一直持续到含有中性钠原子的局部富钠团簇形成之前。非晶态Na0.76Si相的体积膨胀率为114%,在室温下的钠扩散率为7×10(-10) cm(2) s(-1)。总体而言,与其他合金型阳极材料相比,非晶硅相在性能上颇具吸引力。这项工作表明,非晶硅可能是钠离子电池阳极的一个有竞争力的候选材料。