Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.
Theory of Condensed Matter Group, Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom.
J Am Chem Soc. 2018 Jun 27;140(25):7994-8004. doi: 10.1021/jacs.8b04183. Epub 2018 Jun 19.
Na-ion batteries are promising alternatives to Li-ion systems for electrochemical energy storage because of the higher natural abundance and widespread distribution of Na compared to Li. High capacity anode materials, such as phosphorus, have been explored to realize Na-ion battery technologies that offer comparable performances to their Li-ion counterparts. While P anodes provide unparalleled capacities, the mechanism of sodiation and desodiation is not well-understood, limiting further optimization. Here, we use a combined experimental and theoretical approach to provide molecular-level insight into the (de)sodiation pathways in black P anodes for sodium-ion batteries. A determination of the P binding in these materials was achieved by comparing to structure models created via species swapping, ab initio random structure searching, and a genetic algorithm. During sodiation, analysis of P chemical shift anisotropies in NMR data reveals P helices and P at the end of chains as the primary structural components in amorphous Na P phases. X-ray diffraction data in conjunction with variable field Na magic-angle spinning NMR support the formation of a new NaP crystal structure (predicted using density-functional theory) on sodiation. During desodiation, P helices are re-formed in the amorphous intermediates, albeit with increased disorder, yet emphasizing the pervasive nature of this motif. The pristine material is not re-formed at the end of desodiation and may be linked to the irreversibility observed in the Na-P system.
钠离子电池作为电化学储能的替代体系,比锂离子电池具有更高的天然丰度和广泛的分布,很有前景。为了实现与锂离子电池相媲美的性能,人们已经探索了高容量的阳极材料,如磷。然而,尽管 P 型阳极提供了无与伦比的容量,但钠化和脱钠的机制还没有被很好地理解,这限制了进一步的优化。在这里,我们使用了一种组合的实验和理论方法,提供了对钠离子电池中黑磷阳极的(去)钠化途径的分子水平的见解。通过与通过物种交换、从头算随机结构搜索和遗传算法创建的结构模型进行比较,确定了这些材料中的 P 键合。在钠化过程中,对 NMR 数据中 P 化学位移各向异性的分析表明,在非晶态 NaP 相中,P 螺旋和链末端的 P 是主要的结构组成部分。结合变场 Na 魔角旋转 NMR 的 X 射线衍射数据支持了一种新的 NaP 晶体结构的形成(使用密度泛函理论预测)。在脱钠过程中,P 螺旋在非晶中间体中重新形成,尽管无序度增加,但这一主题仍然普遍存在。在脱钠结束时,原始材料没有重新形成,这可能与在 Na-P 体系中观察到的不可逆性有关。