Suppr超能文献

几何畸变如何在共轭大分子中散射电子激发。

How Geometric Distortions Scatter Electronic Excitations in Conjugated Macromolecules.

作者信息

Shi Tian, Li Hao, Tretiak Sergei, Chernyak Vladimir Y

机构信息

†Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.

‡Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

出版信息

J Phys Chem Lett. 2014 Nov 20;5(22):3946-52. doi: 10.1021/jz501912d. Epub 2014 Oct 29.

Abstract

Effects of disorder and exciton-phonon interactions are the major factors controlling photoinduced dynamics and energy-transfer processes in conjugated organic semiconductors, thus defining their electronic functionality. All-atom quantum-chemical simulations are potentially capable of describing such phenomena in complex "soft" organic structures, yet they are frequently computationally restrictive. Here we efficiently characterize how electronic excitations in branched conjugated molecules interact with molecular distortions using the exciton scattering (ES) approach as a fundamental principle combined with effective tight-binding models. Molecule geometry deformations are incorporated to the ES view of electronic excitations by identifying the dependence of the Frenkel-type exciton Hamiltonian parameters on the characteristic geometry parameters. We illustrate our methodology using two examples of intermolecular distortions, bond length alternation and single bond rotation, which constitute vibrational degrees of freedom strongly coupled to the electronic system in a variety of conjugated systems. The effect on excited-state electronic structures has been attributed to localized variation of exciton on-site energies and couplings. As a result, modifications of the entire electronic spectra due to geometric distortions can be efficiently and accurately accounted for with negligible numerical cost. The presented approach can be potentially extended to model electronic structures and photoinduced processes in bulk amorphous polymer materials.

摘要

无序和激子 - 声子相互作用的影响是控制共轭有机半导体中光致动力学和能量转移过程的主要因素,从而决定了它们的电子功能。全原子量子化学模拟有潜力描述复杂“软”有机结构中的此类现象,但它们在计算上常常具有局限性。在此,我们利用激子散射(ES)方法作为基本原理,并结合有效的紧束缚模型,有效地描述了支化共轭分子中的电子激发如何与分子畸变相互作用。通过确定弗伦克尔型激子哈密顿量参数对特征几何参数的依赖性,将分子几何变形纳入到电子激发的ES观点中。我们用分子间畸变的两个例子,即键长交替和单键旋转,来说明我们的方法,这两种畸变构成了与各种共轭体系中的电子系统强烈耦合的振动自由度。对激发态电子结构的影响归因于激子在位能和耦合的局部变化。结果,由于几何畸变导致的整个电子光谱的变化可以以可忽略的数值成本被高效且准确地考虑。所提出的方法有可能扩展到对块状非晶聚合物材料中的电子结构和光致过程进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验