Suppr超能文献

非绝热激发态分子动力学:有机共轭材料中光物理的建模。

Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.

机构信息

Los Alamos National Laboratory , Theoretical Division, Los Alamos, New Mexico 87545, United States.

出版信息

Acc Chem Res. 2014 Apr 15;47(4):1155-64. doi: 10.1021/ar400263p. Epub 2014 Mar 27.

Abstract

To design functional photoactive materials for a variety of technological applications, researchers need to understand their electronic properties in detail and have ways to control their photoinduced pathways. When excited by photons of light, organic conjugated materials (OCMs) show dynamics that are often characterized by large nonadiabatic (NA) couplings between multiple excited states through a breakdown of the Born-Oppenheimer (BO) approximation. Following photoexcitation, various nonradiative intraband relaxation pathways can lead to a number of complex processes. Therefore, computational simulation of nonadiabatic molecular dynamics is an indispensable tool for understanding complex photoinduced processes such as internal conversion, energy transfer, charge separation, and spatial localization of excitons. Over the years, we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework that efficiently and accurately describes photoinduced phenomena in extended conjugated molecular systems. We use the fewest-switches surface hopping (FSSH) algorithm to treat quantum transitions among multiple adiabatic excited state potential energy surfaces (PESs). Extended molecular systems often contain hundreds of atoms and involve large densities of excited states that participate in the photoinduced dynamics. We can achieve an accurate description of the multiple excited states using the configuration interaction single (CIS) formalism with a semiempirical model Hamiltonian. Analytical techniques allow the trajectory to be propagated "on the fly" using the complete set of NA coupling terms and remove computational bottlenecks in the evaluation of excited-state gradients and NA couplings. Furthermore, the use of state-specific gradients for propagation of nuclei on the native excited-state PES eliminates the need for simplifications such as the classical path approximation (CPA), which only uses ground-state gradients. Thus, the NA-ESMD methodology offers a computationally tractable route for simulating hundreds of atoms on ~10 ps time scales where multiple coupled excited states are involved. In this Account, we review recent developments in the NA-ESMD modeling of photoinduced dynamics in extended conjugated molecules involving multiple coupled electronic states. We have successfully applied the outlined NA-ESMD framework to study ultrafast conformational planarization in polyfluorenes where the rate of torsional relaxation can be controlled based on the initial excitation. With the addition of the state reassignment algorithm to identify instances of unavoided crossings between noninteracting PESs, NA-ESMD can now be used to study systems in which these so-called trivial unavoided crossings are expected to predominate. We employ this technique to analyze the energy transfer between poly(phenylene vinylene) (PPV) segments where conformational fluctuations give rise to numerous instances of unavoided crossings leading to multiple pathways and complex energy transfer dynamics that cannot be described using a simple Förster model. In addition, we have investigated the mechanism of ultrafast unidirectional energy transfer in dendrimers composed of poly(phenylene ethynylene) (PPE) chromophores and have demonstrated that differential nuclear motion favors downhill energy transfer in dendrimers. The use of native excited-state gradients allows us to observe this feature.

摘要

为了设计用于各种技术应用的功能型光活性材料,研究人员需要详细了解它们的电子性质,并找到控制其光诱导途径的方法。当有机共轭材料(OCM)被光的光子激发时,其动力学通常表现为多个激发态之间的大非绝热(NA)耦合,这打破了玻恩-奥本海默(BO)近似。光激发后,各种非辐射的带内弛豫途径可能导致许多复杂的过程。因此,非绝热分子动力学的计算模拟是理解内转换、能量转移、电荷分离和激子空间局域化等复杂光诱导过程的不可或缺的工具。多年来,我们开发了一种非绝热激发态分子动力学(NA-ESMD)框架,该框架可以有效地、准确地描述扩展共轭分子体系中的光诱导现象。我们使用最少切换表面跳跃(FSSH)算法来处理多个绝热激发态势能面(PES)之间的量子跃迁。扩展的分子体系通常包含数百个原子,并涉及参与光致动力学的大量激发态密度。我们可以使用半经验模型哈密顿量的组态相互作用单(CIS)形式来对多个激发态进行精确描述。分析技术允许使用完整的 NA 耦合项“实时”传播轨迹,并消除激发态梯度和 NA 耦合评估中的计算瓶颈。此外,对于在固有激发态 PES 上传播核,使用状态特定的梯度来代替经典路径近似(CPA),这仅使用基态梯度。因此,NA-ESMD 方法为模拟涉及多个耦合激发态的数百个原子提供了一种计算上可行的途径,时间尺度约为 10 ps。在本报告中,我们回顾了在涉及多个耦合电子态的扩展共轭分子中,用光激发动力学的 NA-ESMD 建模的最新进展。我们已经成功地将概述的 NA-ESMD 框架应用于研究聚芴中的超快构象平面化,其中扭转弛豫的速率可以基于初始激发来控制。通过添加状态重新分配算法来识别非相互作用 PES 之间不可避免的交叉实例,现在可以使用 NA-ESMD 来研究预计这些所谓的平凡不可避免交叉将占主导地位的系统。我们使用该技术来分析聚(对苯乙炔)(PPE)发色团组成的树枝状聚合物中的能量转移,构象波动导致许多不可避免的交叉,导致多种途径和复杂的能量转移动力学,这不能用简单的Förster 模型来描述。此外,我们研究了由聚(对苯乙炔)(PPE)发色团组成的树枝状聚合物中超快单向能量转移的机制,并证明了核的差异运动有利于树枝状聚合物中向下的能量转移。使用固有激发态梯度可以观察到这一特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验