Suppr超能文献

基于当前迭代控制知识的增强型数据驱动最优终端迭代学习控制。

Enhanced Data-Driven Optimal Terminal ILC Using Current Iteration Control Knowledge.

出版信息

IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2939-48. doi: 10.1109/TNNLS.2015.2461022. Epub 2015 Aug 12.

Abstract

In this paper, an enhanced data-driven optimal terminal iterative learning control (E-DDOTILC) is proposed for a class of nonlinear and nonaffine discrete-time systems. A dynamical linearization approach is first developed with iterative operation points to formulate the relationship of system output and input into a linear affine form. Then, an ILC law is constructed with a nonlinear learning gain, which is a function about the system partial derivative with respect to the time-varying control input. In addition, a parameter updating law is designed to estimate the unknown partial derivatives iteratively. The input signals of the proposed E-DDOTILC are time-varying and updated utilizing not only the terminal tracking error of the previous run but also the input signals of the previous time instants in the current iteration. The proposed approach is a data-driven control strategy and only the I/O data are required for the controller design and analysis. The monotonic convergence and effectiveness of the proposed approach is further verified by both the rigorous mathematical analysis and the simulation results.

摘要

本文提出了一种增强型数据驱动最优终端迭代学习控制(E-DDOTILC)方法,用于一类非线性非仿射离散时间系统。首先采用迭代工作点的方法发展了一种动态线性化方法,将系统输出与输入之间的关系表示为线性仿射形式。然后,基于系统关于时变控制输入的偏导数构造了一个非线性学习增益的迭代学习律。此外,设计了一个参数更新律,用于迭代地估计未知的偏导数。所提出的 E-DDOTILC 的输入信号是时变的,并且不仅利用前一个运行的终端跟踪误差,还利用当前迭代中前一个时刻的输入信号进行更新。该方法是一种数据驱动的控制策略,仅需 I/O 数据即可进行控制器设计和分析。通过严格的数学分析和仿真结果进一步验证了所提出方法的单调性收敛性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验