IEEE Trans Cybern. 2022 Jul;52(7):6143-6157. doi: 10.1109/TCYB.2020.3029596. Epub 2022 Jul 4.
In this article, we propose a data-driven iterative learning control (ILC) framework for unknown nonlinear nonaffine repetitive discrete-time single-input-single-output systems by applying the dynamic linearization (DL) technique. The ILC law is constructed based on the equivalent DL expression of an unknown ideal learning controller in the iteration and time domains. The learning control gain vector is adaptively updated by using a Newton-type optimization method. The monotonic convergence on the tracking errors of the controlled plant is theoretically guaranteed with respect to the 2-norm under some conditions. In the proposed ILC framework, existing proportional, integral, and derivative type ILC, and high-order ILC can be considered as special cases. The proposed ILC framework is a pure data-driven ILC, that is, the ILC law is independent of the physical dynamics of the controlled plant, and the learning control gain updating algorithm is formulated using only the measured input-output data of the nonlinear system. The proposed ILC framework is effectively verified by two illustrative examples on a complicated unknown nonlinear system and on a linear time-varying system.
在本文中,我们通过应用动态线性化(DL)技术,为未知非线性非仿射重复离散时间单输入单输出系统提出了一种数据驱动的迭代学习控制(ILC)框架。ILC 法则基于迭代和时域中未知理想学习控制器的等效 DL 表达式构建。通过使用牛顿型优化方法,自适应更新学习控制增益向量。在某些条件下,理论上保证了受控植物跟踪误差的单调收敛性,相对于 2-范数。在所提出的 ILC 框架中,可以将现有的比例、积分和导数型 ILC 以及高阶 ILC 视为特例。所提出的 ILC 框架是一种纯数据驱动的 ILC,即 ILC 法则独立于受控植物的物理动力学,并且使用仅测量的非线性系统的输入-输出数据来制定学习控制增益更新算法。通过对复杂未知非线性系统和线性时变系统的两个说明性示例,有效地验证了所提出的 ILC 框架。