Department of Physics and Materials Science, City University of Hong Kong , Hong Kong SAR, P. R. China.
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, P. R. China.
ACS Appl Mater Interfaces. 2015 Sep 16;7(36):19986-93. doi: 10.1021/acsami.5b04695. Epub 2015 Aug 24.
Solution processed zinc oxide (ZnO) nanoparticles (NPs) with excellent electron transport properties and a low-temperature process is a viable candidate to replace titanium dioxide (TiO2) as electron transport layer to develop high-efficiency perovskite solar cells on flexible substrates. However, the number of reported high-performance perovskite solar cells using ZnO-NPs is still limited. Here we report a detailed investigation on the chemistry and crystal growth of CH3NH3PbI3 perovskite on ZnO-NP thin films. We find that the perovskite films would severely decompose into PbI2 upon thermal annealing on the bare ZnO-NP surface. X-ray photoelectron spectroscopy (XPS) results show that the hydroxide groups on the ZnO-NP surface accelerate the decomposition of the perovskite films. To reduce the decomposition, we introduce a buffer layer in between the ZnO-NPs and perovskite layers. We find that a commonly used buffer layer with small molecule [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) can slow down but cannot completely avoid the decomposition. On the other hand, a polymeric buffer layer using poly(ethylenimine) (PEI) can effectively separate the ZnO-NPs and perovskite, which allows larger crystal formation with thermal annealing. The power conversion efficiencies of perovskite photovoltaic cells are significantly increased from 6.4% to 10.2% by replacing PC61BM with PEI as the buffer layer.
溶液处理的氧化锌 (ZnO) 纳米粒子 (NPs) 具有优异的电子传输性能,且低温处理工艺是一种可行的替代方案,可以取代二氧化钛 (TiO2) 作为电子传输层,在柔性衬底上开发高效的钙钛矿太阳能电池。然而,使用 ZnO-NPs 的高性能钙钛矿太阳能电池的报道数量仍然有限。在此,我们报告了对 ZnO-NP 薄膜上 CH3NH3PbI3 钙钛矿的化学和晶体生长的详细研究。我们发现,在裸 ZnO-NP 表面上进行热退火时,钙钛矿薄膜会严重分解为 PbI2。X 射线光电子能谱 (XPS) 结果表明,ZnO-NP 表面上的氢氧化物基团加速了钙钛矿薄膜的分解。为了减少分解,我们在 ZnO-NPs 和钙钛矿层之间引入了缓冲层。我们发现,常用的小分子 [6,6]-苯基-C61-丁酸甲酯 (PC61BM) 缓冲层可以减缓但不能完全避免分解。另一方面,使用聚乙烯亚胺 (PEI) 的聚合物缓冲层可以有效地将 ZnO-NPs 和钙钛矿隔开,从而允许在热退火时形成更大的晶体。通过用 PEI 取代 PC61BM 作为缓冲层,钙钛矿光伏电池的功率转换效率从 6.4%显著提高到 10.2%。