Ertem Mehmed Z, Konezny Steven J, Araujo C Moyses, Batista Victor S
†Department of Chemistry, Brookhaven National Laboratory, Building 555A, Upton, New York 11973, United States.
‡Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 08107-06520, United States.
J Phys Chem Lett. 2013 Mar 7;4(5):745-8. doi: 10.1021/jz400183z. Epub 2013 Feb 15.
Recent breakthroughs in electrochemical studies have reported aqueous CO2 reduction to formic acid, formaldehyde, and methanol at low overpotentials (-0.58 V versus SCE), with a Pt working electrode in acidic pyridine (Pyr) solutions. We find that CO2 is reduced by H atoms bound to the Pt surface that are transferred as hydrides to CO2 in a proton-coupled hydride transfer (PCHT) mechanism activated by pyridinium (PyrH(+)), CO2 + Pt-H + PyrH(+) + e(-) → Pyr + Pt + HCO2H. The surface-bound H atoms consumed by CO2 reduction is replenished by the one-electron reduction of PyrH(+) through the proton-coupled electron transfer (PCET), PyrH(+) + Pt + e(-) → Pyr + Pt-H. Pyridinium is essential to establish a high concentration of Brønsted acid in contact with CO2 and with the Pt surface, much higher than the concentration of free protons. These findings are particularly relevant to generate fuels with a carbon-neutral footprint.
近期电化学研究取得的突破报道了在酸性吡啶(Pyr)溶液中使用铂工作电极,在低过电位(相对于标准甘汞电极 -0.58 V)下将二氧化碳电化学还原为甲酸、甲醛和甲醇。我们发现,二氧化碳被与铂表面结合的氢原子还原,这些氢原子以氢化物的形式在由吡啶鎓(PyrH(+))激活的质子耦合氢化物转移(PCHT)机制中转移至二氧化碳,即CO2 + Pt-H + PyrH(+) + e(-) → Pyr + Pt + HCO2H。通过质子耦合电子转移(PCET),吡啶鎓(PyrH(+))的单电子还原补充了因二氧化碳还原而消耗的表面结合氢原子,即PyrH(+) + Pt + e(-) → Pyr + Pt-H。吡啶鎓对于在与二氧化碳及铂表面接触处建立高浓度的布朗斯特酸至关重要,该浓度远高于游离质子的浓度。这些发现对于生成具有碳中和足迹的燃料尤为重要。