Rozpedek Wioletta, Markiewicz Lukasz, Diehl J Alan, Pytel Dariusz, Majsterek Ireneusz
Department of Clinical Chemistry and Biochemistry, Military-Medical Faculty, Medical University of Lodz, Hallera 1, 90-647 Lodz, Poland.
Curr Med Chem. 2015;22(27):3169-84. doi: 10.2174/0929867322666150818104254.
Recent evidence suggests that the development of Alzheimer's disease (AD) and related cognitive loss is due to mutations in the Amyloid Precursor Protein (APP) gene on chromosome 21 and increased activation of eukaryotic translation initiation factor-2α (eIF2α) phosphorylation. The high level of misfolded and unfolded proteins loading in Endoplasmic Reticulum (ER) lumen triggers ER stress and as a result Unfolded Protein Response (UPR) pathways are activated. Stress-dependent activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) leads to the significant elevation of phospho-eIF2α. That attenuates general translation and, on the other hand, promotes the preferential synthesis of Activating Transcription Factor 4 (ATF4) and secretase β (BACE1) - a pivotal enzyme responsible for the initiation of the amyloidogenic pathway resulting in the generation of the amyloid β (Aβ) variant with high ability to form toxic senile plaques in AD brains. Moreover, excessive, long-term stress conditions may contribute to inducing neuronal death by apoptosis as a result of the overactivated expression of pro-apoptotic proteins via ATF4. These findings allow to infer that dysregulated translation, increased expression of BACE1 and ATF4, as a result of eIF2α phosphorylation, may be a major contributor to structural and functional neuronal loss resulting in memory impairment. Thus, blocking PERK-dependent eIF2α phosphorylation through specific, small-molecule PERK branch inhibitors seems to be a potential treatment strategy for AD individuals. That may contribute to the restoration of global translation rates and reduction of expression of ATF4 and BACE1. Hence, the treatment strategy can block accelerated β -amyloidogenesis by reduction in APP cleaving via the BACE1-dependent amyloidogenic pathway.
最近的证据表明,阿尔茨海默病(AD)及相关认知功能丧失的发生是由于21号染色体上淀粉样前体蛋白(APP)基因突变以及真核翻译起始因子-2α(eIF2α)磷酸化的激活增加。内质网(ER)腔内错误折叠和未折叠蛋白的高水平堆积引发内质网应激,结果未折叠蛋白反应(UPR)通路被激活。蛋白激酶RNA样内质网激酶(PERK)的应激依赖性激活导致磷酸化eIF2α显著升高。这会减弱整体翻译,另一方面,促进激活转录因子4(ATF4)和分泌酶β(BACE1)的优先合成——BACE1是一种关键酶,负责淀粉样蛋白生成途径的起始,导致生成具有高能力在AD大脑中形成有毒老年斑的淀粉样β(Aβ)变体。此外,过度的长期应激条件可能通过ATF4导致促凋亡蛋白过度激活表达,从而诱导神经元通过凋亡死亡。这些发现可以推断,由于eIF2α磷酸化导致的翻译失调、BACE1和ATF4表达增加,可能是导致神经元结构和功能丧失进而导致记忆障碍的主要原因。因此,通过特异性小分子PERK分支抑制剂阻断PERK依赖性eIF2α磷酸化似乎是AD患者的一种潜在治疗策略。这可能有助于恢复整体翻译速率并降低ATF4和BACE1的表达。因此,该治疗策略可以通过减少经由BACE1依赖性淀粉样蛋白生成途径的APP切割来阻断加速的β-淀粉样蛋白生成。