Suppr超能文献

利用橡树岭生物监测工具包发现哮喘和流感的多尺度共现模式。

Discovering Multi-Scale Co-Occurrence Patterns of Asthma and Influenza with Oak Ridge Bio-Surveillance Toolkit.

机构信息

Computational Science and Engineering Division, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; Health Data Sciences Institute, Oak Ridge National Laboratory , Oak Ridge, TN , USA.

Computational Science and Engineering Division, Oak Ridge National Laboratory , Oak Ridge, TN , USA.

出版信息

Front Public Health. 2015 Aug 3;3:182. doi: 10.3389/fpubh.2015.00182. eCollection 2015.

Abstract

We describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data from 2009 to 2010 pandemic H1N1 influenza season and analyze whether different geographic regions within the United States (US) showed an increase in co-occurrence patterns of the flu and asthma. Our analyses reveal that the temporal patterns extracted from the eHRC data show a distinct lag time between the peak incidence of the asthma and the flu. While the increased occurrence of asthma contributed to increased flu incidence during the pandemic, this co-occurrence is predominant for female patients. The geo-temporal patterns reveal that the co-occurrence of the flu and asthma are typically concentrated within the south-east US. Further, in agreement with previous studies, large urban areas (such as New York, Miami, and Los Angeles) exhibit co-occurrence patterns that suggest a peak incidence of asthma and flu significantly early in the spring and winter seasons. Together, our data-analytic approach, integrated within the Oak Ridge Bio-surveillance Toolkit platform, demonstrates how eHRC data can provide novel insights into co-occurring disease patterns.

摘要

我们描述了一种数据驱动的无监督机器学习方法,用于从大规模电子医疗报销索赔(eHRC)数据集中提取哮喘和流感的地理时间共同发生模式。具体来说,我们检查了 2009 年至 2010 年大流行 H1N1 流感季节的 eHRC 数据,并分析了美国(US)内不同地理区域是否显示出流感和哮喘共同发生模式的增加。我们的分析表明,从 eHRC 数据中提取的时间模式显示出哮喘和流感发病率峰值之间存在明显的滞后时间。虽然哮喘的发病率增加导致大流行期间流感发病率的增加,但这种共同发生主要发生在女性患者中。地理时间模式表明,流感和哮喘的共同发生通常集中在美国东南部。此外,与先前的研究一致,大城市地区(如纽约、迈阿密和洛杉矶)的共同发生模式表明,哮喘和流感的发病率峰值明显早于春季和冬季。总之,我们的数据分析方法集成在橡树岭生物监测工具包平台内,展示了 eHRC 数据如何为共同发生的疾病模式提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099b/4522606/0ac4da429556/fpubh-03-00182-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验