Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
Phys Chem Chem Phys. 2015 Sep 28;17(36):23346-55. doi: 10.1039/c5cp03324a.
Cobalt is a widely used catalyst for many heterogeneous reactions, including the Fischer-Tropsch (FT) process, which converts syngas (H2 and CO) to higher hydrocarbons. As a result, a better understanding of the key chemical steps on the Co surface, such as the dissociative chemisorption of H2 as an initial step of the FT process, is of fundamental importance. Here, we report an accurate full-dimensional global potential energy surface for the dissociative chemisorption of H2 on the rigid Co(0001) surface constructed from more than 3000 density functional theory points. The high-fidelity potential energy surface was obtained using the permutation invariant polynomial-neural network method, which preserves both the permutation symmetry of H2 and translational symmetry of the Co(0001) surface. The reaction path features a very low barrier on the top site. Full-dimensional quantum dynamical calculations provide insights into the dissociation dynamics and influence of the initial vibrational, rotational, and orientational degrees of freedom.
钴是许多多相反应(包括费托(FT)过程)中广泛使用的催化剂,该过程将合成气(H2 和 CO)转化为更高的碳氢化合物。因此,更好地了解 Co 表面上的关键化学步骤,例如 FT 过程的初始步骤 H2 的离解化学吸附,具有重要的意义。在这里,我们报告了一个准确的、全维的、刚性 Co(0001)表面上 H2 离解化学吸附的全局势能表面,该表面是由超过 3000 个密度泛函理论点构建的。使用置换不变多项式神经网络方法获得了高保真势能表面,该方法既保留了 H2 的置换对称性,又保留了 Co(0001)表面的平移对称性。反应路径在顶位具有非常低的势垒。全维量子动力学计算提供了对离解动力学和初始振动、旋转和取向自由度的影响的深入了解。