Suppr超能文献

高级皮层中的刺激负荷与振荡活动

Stimulus Load and Oscillatory Activity in Higher Cortex.

作者信息

Kornblith Simon, Buschman Timothy J, Miller Earl K

机构信息

Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Princeton Neuroscience Institute, Department of Psychology, Princeton University, Princeton, NJ 08540, USA.

出版信息

Cereb Cortex. 2016 Sep;26(9):3772-84. doi: 10.1093/cercor/bhv182. Epub 2015 Aug 18.

Abstract

Exploring and exploiting a rich visual environment requires perceiving, attending, and remembering multiple objects simultaneously. Recent studies have suggested that this mental "juggling" of multiple objects may depend on oscillatory neural dynamics. We recorded local field potentials from the lateral intraparietal area, frontal eye fields, and lateral prefrontal cortex while monkeys maintained variable numbers of visual stimuli in working memory. Behavior suggested independent processing of stimuli in each hemifield. During stimulus presentation, higher-frequency power (50-100 Hz) increased with the number of stimuli (load) in the contralateral hemifield, whereas lower-frequency power (8-50 Hz) decreased with the total number of stimuli in both hemifields. During the memory delay, lower-frequency power increased with contralateral load. Load effects on higher frequencies during stimulus encoding and lower frequencies during the memory delay were stronger when neural activity also signaled the location of the stimuli. Like power, higher-frequency synchrony increased with load, but beta synchrony (16-30 Hz) showed the opposite effect, increasing when power decreased (stimulus presentation) and decreasing when power increased (memory delay). Our results suggest roles for lower-frequency oscillations in top-down processing and higher-frequency oscillations in bottom-up processing.

摘要

探索和利用丰富的视觉环境需要同时感知、关注和记忆多个物体。最近的研究表明,这种对多个物体的思维“ juggling”可能依赖于振荡神经动力学。我们在猴子将不同数量的视觉刺激保持在工作记忆中时,记录了顶内侧面区域、额叶眼区和前额叶外侧皮质的局部场电位。行为表明每个半视野中的刺激是独立处理的。在刺激呈现期间,高频功率(50 - 100赫兹)随着对侧半视野中刺激的数量(负荷)增加而增加,而低频功率(8 - 50赫兹)随着两个半视野中刺激的总数减少而降低。在记忆延迟期间,低频功率随着对侧负荷增加而增加。当神经活动也表明刺激的位置时,刺激编码期间对高频的负荷效应以及记忆延迟期间对低频的负荷效应更强。与功率一样,高频同步随着负荷增加而增加,但β同步(16 - 30赫兹)表现出相反的效应,在功率降低时(刺激呈现)增加,在功率增加时(记忆延迟)降低。我们的结果表明低频振荡在自上而下的加工中起作用,高频振荡在自下而上的加工中起作用。

相似文献

1
Stimulus Load and Oscillatory Activity in Higher Cortex.
Cereb Cortex. 2016 Sep;26(9):3772-84. doi: 10.1093/cercor/bhv182. Epub 2015 Aug 18.
2
Brain oscillatory 4-35 Hz EEG responses during an n-back task with complex visual stimuli.
Neurosci Lett. 2012 May 10;516(1):141-5. doi: 10.1016/j.neulet.2012.03.076. Epub 2012 Apr 2.
7
Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography.
Clin Neurophysiol. 2009 Mar;120(3):497-504. doi: 10.1016/j.clinph.2008.11.023. Epub 2009 Jan 12.
8
Ketamine Alters Lateral Prefrontal Oscillations in a Rule-Based Working Memory Task.
J Neurosci. 2018 Mar 7;38(10):2482-2494. doi: 10.1523/JNEUROSCI.2659-17.2018. Epub 2018 Feb 2.
9
Working Memory Load Modulates Neuronal Coupling.
Cereb Cortex. 2019 Apr 1;29(4):1670-1681. doi: 10.1093/cercor/bhy065.

引用本文的文献

1
Working memory readout varies with frontal theta rhythms.
bioRxiv. 2025 Apr 1:2025.03.27.645781. doi: 10.1101/2025.03.27.645781.
3
Sub-acute stroke demonstrates altered beta oscillation and connectivity pattern in working memory.
J Neuroeng Rehabil. 2024 Dec 4;21(1):212. doi: 10.1186/s12984-024-01516-5.
5
Distinct functions for beta and alpha bursts in gating of human working memory.
Nat Commun. 2024 Oct 17;15(1):8950. doi: 10.1038/s41467-024-53257-7.
8
Signal switching may enhance processing power of the brain.
Trends Cogn Sci. 2024 Jul;28(7):600-613. doi: 10.1016/j.tics.2024.04.008. Epub 2024 May 18.
9
Event-related theta and gamma band oscillatory dynamics during visuo-spatial sequence memory in younger and older adults.
PLoS One. 2024 Apr 2;19(4):e0297995. doi: 10.1371/journal.pone.0297995. eCollection 2024.
10
Alterations of neural activity in the prefrontal cortex associated with deficits in working memory performance.
Front Behav Neurosci. 2023 Oct 17;17:1213435. doi: 10.3389/fnbeh.2023.1213435. eCollection 2023.

本文引用的文献

1
A jackknife approach to quantifying single-trial correlation between covariance-based metrics undefined on a single-trial basis.
Neuroimage. 2015 Jul 1;114:57-70. doi: 10.1016/j.neuroimage.2015.04.040. Epub 2015 Apr 24.
2
Visual areas exert feedforward and feedback influences through distinct frequency channels.
Neuron. 2015 Jan 21;85(2):390-401. doi: 10.1016/j.neuron.2014.12.018. Epub 2014 Dec 31.
3
A Tradeoff Between Accuracy and Flexibility in a Working Memory Circuit Endowed with Slow Feedback Mechanisms.
Cereb Cortex. 2015 Oct;25(10):3586-601. doi: 10.1093/cercor/bhu202. Epub 2014 Sep 24.
4
Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4.
Nat Neurosci. 2014 Jul;17(7):1003-11. doi: 10.1038/nn.3742. Epub 2014 Jun 15.
5
Executive control processes underlying multi-item working memory.
Nat Neurosci. 2014 Jun;17(6):876-83. doi: 10.1038/nn.3702. Epub 2014 Apr 20.
7
Changing concepts of working memory.
Nat Neurosci. 2014 Mar;17(3):347-56. doi: 10.1038/nn.3655. Epub 2014 Feb 25.
8
Visual working memory capacity: from psychophysics and neurobiology to individual differences.
Trends Cogn Sci. 2013 Aug;17(8):391-400. doi: 10.1016/j.tics.2013.06.006. Epub 2013 Jul 11.
9
Synchronous oscillatory neural ensembles for rules in the prefrontal cortex.
Neuron. 2012 Nov 21;76(4):838-846. doi: 10.1016/j.neuron.2012.09.029.
10
Content-specific fronto-parietal synchronization during visual working memory.
Science. 2012 Nov 23;338(6110):1097-100. doi: 10.1126/science.1224000. Epub 2012 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验