Suppr超能文献

时间的问题:在时频图上应用偏最小二乘法分析以处理应用脑电图数据时变化的时间间隔

The Problem with Time: Application of Partial Least Squares Analysis on Time-Frequency Plots to Account for Varying Time Intervals with Applied EEG Data.

作者信息

Szostakiwskyj Jessie M H, Cortese Filomeno, Abdul-Rhaman Raneen, Anderson Sarah J, Warren Amy L, Archer Rebecca, Read Emma, Hecker Kent G

机构信息

Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.

Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.

出版信息

Brain Sci. 2025 Jan 30;15(2):135. doi: 10.3390/brainsci15020135.

Abstract

When attempting to study neurocognitive mechanisms with electroencephalography (EEG) in applied ecologically valid settings, responses to stimuli may differ in time, which presents challenges to traditional EEG averaging methods. In this proof-of-concept paper, we present a method to normalize time over unequal trial lengths while preserving frequency content. Epochs are converted to time-frequency space where they are resampled to contain an equal number of timepoints representing the proportion of trial complete rather than true time. To validate this method, we used EEG data recorded from 8 novices and 4 experts in veterinary medicine while completing decision-making tasks using two question types: multiple-choice and script concordance questions used in veterinary school exams. The resulting resampled time-frequency data were analyzed with partial least squares (PLS), a multivariate technique that extracts patterns of data that support a contrast between conditions and groups while controlling for Type I error. We found a significant latent variable representing a difference between question types for experts only. Despite within and between subject differences in timing, we found consistent differences between question types in experts in gamma and beta bands that are consistent with changes resulting from increased information load and decision-making. This novel analysis method may be a viable path forward to preserve ecological validity in EEG studies.

摘要

在试图通过脑电图(EEG)在应用生态学有效环境中研究神经认知机制时,对刺激的反应在时间上可能存在差异,这给传统的EEG平均方法带来了挑战。在这篇概念验证论文中,我们提出了一种方法,在保留频率内容的同时,对不等试验长度的时间进行归一化。将各时段转换到时间-频率空间,在该空间中对它们进行重新采样,使其包含相等数量的时间点,这些时间点代表试验完成的比例而非真实时间。为了验证该方法,我们使用了从8名新手和4名兽医学专家记录的EEG数据,这些专家在使用两种问题类型完成决策任务时:兽医学院考试中使用的多项选择题和脚本一致性问题。使用偏最小二乘法(PLS)对得到的重新采样时间-频率数据进行分析,PLS是一种多变量技术,可提取支持条件和组之间对比的数据模式,同时控制I型错误。我们发现仅在专家中存在一个代表问题类型差异的显著潜在变量。尽管个体内部和个体之间在时间上存在差异,但我们发现专家中问题类型在γ和β波段存在一致差异,这与信息负荷增加和决策导致的变化一致。这种新颖的分析方法可能是在EEG研究中保持生态有效性的一条可行途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f3e/11853174/636fa11ad78f/brainsci-15-00135-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验