Claussnitzer Melina, Dankel Simon N, Kim Kyoung-Han, Quon Gerald, Meuleman Wouter, Haugen Christine, Glunk Viktoria, Sousa Isabel S, Beaudry Jacqueline L, Puviindran Vijitha, Abdennur Nezar A, Liu Jannel, Svensson Per-Arne, Hsu Yi-Hsiang, Drucker Daniel J, Mellgren Gunnar, Hui Chi-Chung, Hauner Hans, Kellis Manolis
From Beth Israel Deaconess Medical Center and Hebrew SeniorLife, Gerontology Division, Harvard Medical School, Boston (M.C., Y.-H.H.); Massachusetts Institute of Technology (MIT) Computer Science and Artificial Intelligence Laboratory (M.C., G.Q., W.M., N.A.A., M.K.), and Broad Institute of MIT and Harvard, Cambridge (M.C., G.Q., W.M., M.K.); Clinical Cooperation Group "Nutrigenomics and Type 2 Diabetes," Helmholtz Center Munich (M.C., H.H.), and Else Kröner-Fresenius Center for Nutritional Medicine, Klinikum rechts der Isar, ZIEL-Institute for Food and Health, Technische Universität München (M.C., V.G., I.S.S., H.H.), Munich, Germany; KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, and Hormone Laboratory, Haukeland University Hospital, Bergen, Norway (S.N.D., C.H., G.M.); Program in Developmental and Stem Cell Biology, Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto (K.-H.K., V.P., J.L., C.-C.H.), and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital (J.L.B., D.J.D.), Toronto; and the Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden (P.-A.S.).
N Engl J Med. 2015 Sep 3;373(10):895-907. doi: 10.1056/NEJMoa1502214. Epub 2015 Aug 19.
Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive.
We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR-Cas9 genome editing in samples from patients.
Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR-Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7.
Our results point to a pathway for adipocyte thermogenesis regulation involving ARID5B, rs1421085, IRX3, and IRX5, which, when manipulated, had pronounced pro-obesity and anti-obesity effects. (Funded by the German Research Center for Environmental Health and others.).
全基因组关联研究可用于识别与疾病相关的基因组区域,但对数据的解读具有挑战性。FTO区域与肥胖存在最强的遗传关联,然而这种关联的机制基础仍不清楚。
我们研究了表观基因组数据、等位基因活性、基序保守性、调节因子表达和基因共表达模式,旨在剖析FTO区域与肥胖之间关联的调控回路和机制基础。我们通过对患者和小鼠样本进行定向扰动以及对患者样本进行内源性CRISPR-Cas9基因组编辑来验证我们的预测。
我们的数据表明,与肥胖相关的FTO等位基因以组织自主的方式抑制脂肪细胞前体细胞中的线粒体产热。rs1421085 T到C的单核苷酸变体破坏了ARID5B阻遏物的保守基序,这导致一个有效的前脂肪细胞增强子去抑制,并且在早期脂肪细胞分化过程中IRX3和IRX5表达增加一倍。这导致了一种细胞自主的发育转变,从消耗能量的米色(明亮)脂肪细胞转变为储存能量的白色脂肪细胞,线粒体产热减少5倍,同时脂质储存增加。在小鼠脂肪组织中抑制Irx3可降低体重并增加能量消耗,而身体活动或食欲没有变化。在具有风险等位基因的参与者的原代脂肪细胞中敲低IRX3或IRX5可恢复产热,使其增加7倍,而在非风险等位基因携带者的脂肪细胞中过表达这些基因则产生相反的效果。通过对具有风险等位基因的患者的原代脂肪细胞中的rs1421085进行CRISPR-Cas9编辑来修复ARID5B基序,可恢复IRX3和IRX5的抑制,激活棕色化表达程序,并恢复产热,使其增加7倍。
我们的结果指出了一条涉及ARID5B、rs1421085、IRX3和IRX5的脂肪细胞产热调节途径,对其进行调控会产生明显的促肥胖和抗肥胖作用。(由德国环境健康研究中心等资助。)