Uehara Erica, Deguchi Tetsuo
Department of Physics, Graduate School of Humanities and Sciences, Ochanomizu University 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
J Phys Condens Matter. 2015 Sep 9;27(35):354104. doi: 10.1088/0953-8984/27/35/354104. Epub 2015 Aug 20.
We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(-N/NK), where the estimates of parameter NK are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius rex, i.e. the screening length of double-stranded DNA.
我们提出了一种用于环形DNA的自回避多边形(SAP)模型,其中不可渗透圆柱段的半径对应于被抗衡离子包围的双链DNA的屏蔽长度。对于该模型,我们通过模拟评估具有N个片段且具有给定纽结K的生成的SAP的概率。我们将其称为SAP模型中具有N个片段的纽结K的纽结概率。我们表明,当N很大时,纽结概率中最重要的因素由指数衰减部分exp(-N/NK)给出,其中参数NK的估计对于我们研究的所有不同纽结都与相同的值一致。因此,我们将其称为纽结概率的特征长度。我们给出了将特征长度表示为圆柱半径rex(即双链DNA的屏蔽长度)的函数的公式。