Wang Rong, Both Sanne K, Geven Mike, Calucci Lucia, Forte Claudia, Dijkstra Pieter J, Karperien Marcel
MIRA - Institute for Biomedical Technology and Technical Medicine and Department of Developmental Bioengineering, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
MIRA - Institute for Biomedical Technology and Technical Medicine and Department of Developmental Bioengineering, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Acta Biomater. 2015 Oct;26:136-44. doi: 10.1016/j.actbio.2015.08.019. Epub 2015 Aug 17.
A terpyridine end-functionalized 8-arm poly(ethylene glycol) was prepared using the reaction of a 4'-aminopentanoxy substituted terpyridine with a p-nitrophenyl chloroformate activated PEG-(OH)8. Supramolecular complexation of the polymer terpyridine moieties by Fe(2+) ions was investigated using NMR, UV-Vis and dynamic light scattering experiments. At low concentrations addition of Fe(2+) ions to an aqueous solution of the polymer conjugate afforded nanogels with a single size distribution around 250 nm. At concentrations above 3 wt%, and at a 1:2 metal to ligand molar ratio, hydrogels were formed with increasing mechanical properties at increasing polymer concentrations. Using bovine chondrocytes, the biocompatibility and potential cytotoxicity of the polymer conjugate, nanogels and hydrogels were studied. The polymer conjugate with free ligands was toxic to the cells likely due to depletion of essential metal ions. When the terpyridine groups were complexed with Fe(2+) ions, both nanogel suspensions and hydrogels showed no cytotoxicity in direct contact with chondrocytes. Indirect contact of gels with chondrocytes using transwells revealed the absence of toxic components by leaching. A Live-Dead assay on chondrocytes encapsulated in the hydrogels indicated that the hydrogels are cytocompatible, revealing the potential use of these materials for biomedical and pharmaceutical applications.
The binding between transition metal ions and ligands with multiple binding sites can be almost as strong as covalent bonds. This metal-ligand charge transfer (MLCT) complexation was used to crosslink water soluble polymers into hydrogels. This approach to novel materials may find applications in the biomedical and pharmaceutical fields. Transition metal ions are essential trace elements present in tissue but up to now no cytotoxicity data of free ligands are available. Data presented show that free ligands are toxic to cells likely by depletion of trace metal ions, whereas kinetically stable complexes are not cytotoxic even when embedded in hydrogels. These results provide fundamental issues to be considered in the design of hydrogels crosslinked through metal ligand complexation.
通过4'-氨基戊氧基取代的三联吡啶与对硝基苯基氯甲酸酯活化的PEG-(OH)8反应制备了三联吡啶末端功能化的八臂聚乙二醇。使用核磁共振(NMR)、紫外可见光谱(UV-Vis)和动态光散射实验研究了聚合物三联吡啶部分与Fe(2+)离子的超分子络合。在低浓度下,向聚合物共轭物的水溶液中加入Fe(2+)离子可得到尺寸分布单一、约为250 nm的纳米凝胶。在浓度高于3 wt%且金属与配体摩尔比为1:2时,形成水凝胶,其机械性能随聚合物浓度增加而增强。使用牛软骨细胞研究了聚合物共轭物、纳米凝胶和水凝胶的生物相容性和潜在细胞毒性。带有游离配体的聚合物共轭物对细胞有毒,可能是由于必需金属离子的消耗。当三联吡啶基团与Fe(2+)离子络合时,纳米凝胶悬浮液和水凝胶与软骨细胞直接接触时均无细胞毒性。使用Transwell小室使凝胶与软骨细胞间接接触,结果表明没有有毒成分渗出。对包裹在水凝胶中的软骨细胞进行的活死细胞检测表明,水凝胶具有细胞相容性,揭示了这些材料在生物医学和制药应用中的潜在用途。
过渡金属离子与具有多个结合位点的配体之间的结合几乎可以与共价键一样强。这种金属-配体电荷转移(MLCT)络合被用于将水溶性聚合物交联成水凝胶。这种新型材料的制备方法可能在生物医学和制药领域找到应用。过渡金属离子是组织中存在的必需微量元素,但到目前为止,尚无游离配体的细胞毒性数据。所呈现的数据表明,游离配体可能通过消耗微量金属离子而对细胞有毒,而动力学稳定的络合物即使嵌入水凝胶中也无细胞毒性。这些结果为通过金属-配体络合交联的水凝胶设计提供了需要考虑的基本问题。