Zarkogianni Konstantia, Litsa Eleni, Mitsis Konstantinos, Wu Po-Yen, Kaddi Chanchala D, Cheng Chih-Wen, Wang May D, Nikita Konstantina S
IEEE Trans Biomed Eng. 2015 Dec;62(12):2735-49. doi: 10.1109/TBME.2015.2470521. Epub 2015 Aug 19.
OBJECTIVE: High prevalence of diabetes mellitus (DM) along with the poor health outcomes and the escalated costs of treatment and care poses the need to focus on prevention, early detection and improved management of the disease. The aim of this paper is to present and discuss the latest accomplishments in sensors for glucose and lifestyle monitoring along with clinical decision support systems (CDSSs) facilitating self-disease management and supporting healthcare professionals in decision making. METHODS: A critical literature review analysis is conducted focusing on advances in: 1) sensors for physiological and lifestyle monitoring, 2) models and molecular biomarkers for predicting the onset and assessing the progress of DM, and 3) modeling and control methods for regulating glucose levels. RESULTS: Glucose and lifestyle sensing technologies are continuously evolving with current research focusing on the development of noninvasive sensors for accurate glucose monitoring. A wide range of modeling, classification, clustering, and control approaches have been deployed for the development of the CDSS for diabetes management. Sophisticated multiscale, multilevel modeling frameworks taking into account information from behavioral down to molecular level are necessary to reveal correlations and patterns indicating the onset and evolution of DM. CONCLUSION: Integration of data originating from sensor-based systems and electronic health records combined with smart data analytics methods and powerful user centered approaches enable the shift toward preventive, predictive, personalized, and participatory diabetes care. SIGNIFICANCE: The potential of sensing and predictive modeling approaches toward improving diabetes management is highlighted and related challenges are identified.
目的:糖尿病(DM)的高患病率以及不良的健康结果,再加上治疗和护理成本的不断攀升,使得有必要关注该疾病的预防、早期检测和改善管理。本文旨在介绍和讨论用于血糖和生活方式监测的传感器以及促进自我疾病管理并支持医疗保健专业人员进行决策的临床决策支持系统(CDSS)的最新成果。 方法:进行了一项批判性文献综述分析,重点关注以下方面的进展:1)用于生理和生活方式监测的传感器;2)用于预测糖尿病发病和评估其进展的模型和分子生物标志物;3)调节血糖水平的建模和控制方法。 结果:血糖和生活方式传感技术在不断发展,当前的研究重点是开发用于精确血糖监测的非侵入性传感器。已采用广泛的建模、分类、聚类和控制方法来开发用于糖尿病管理的CDSS。需要复杂的多尺度、多层次建模框架,考虑从行为到分子水平的信息,以揭示表明糖尿病发病和演变的相关性和模式。 结论:将基于传感器的系统和电子健康记录产生的数据与智能数据分析方法以及强大的以用户为中心的方法相结合,能够实现向预防性、预测性、个性化和参与性糖尿病护理的转变。 意义:强调了传感和预测建模方法在改善糖尿病管理方面的潜力,并确定了相关挑战。
IEEE Trans Biomed Eng. 2015-12
Chem Soc Rev. 2020-11-7
J Med Internet Res. 2023-12-8
J Diabetes Sci Technol. 2011-5-1
Stud Health Technol Inform. 2015
AIMS Public Health. 2023-5-23
Sensors (Basel). 2022-3-23
BMC Med Inform Decis Mak. 2021-6-28
Online J Public Health Inform. 2020-7-24
Int J Telemed Appl. 2020-7-16
Proc (IEEE Int Conf Healthc Inform). 2013-9
IFMBE Proc. 2014
IEEE J Transl Eng Health Med. 2013-11-21
Diagnostics (Basel). 2013-10-29
Med Biol Eng Comput. 2015-12