文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

糖尿病管理新兴技术综述

A Review of Emerging Technologies for the Management of Diabetes Mellitus.

作者信息

Zarkogianni Konstantia, Litsa Eleni, Mitsis Konstantinos, Wu Po-Yen, Kaddi Chanchala D, Cheng Chih-Wen, Wang May D, Nikita Konstantina S

出版信息

IEEE Trans Biomed Eng. 2015 Dec;62(12):2735-49. doi: 10.1109/TBME.2015.2470521. Epub 2015 Aug 19.


DOI:10.1109/TBME.2015.2470521
PMID:26292334
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5859570/
Abstract

OBJECTIVE: High prevalence of diabetes mellitus (DM) along with the poor health outcomes and the escalated costs of treatment and care poses the need to focus on prevention, early detection and improved management of the disease. The aim of this paper is to present and discuss the latest accomplishments in sensors for glucose and lifestyle monitoring along with clinical decision support systems (CDSSs) facilitating self-disease management and supporting healthcare professionals in decision making. METHODS: A critical literature review analysis is conducted focusing on advances in: 1) sensors for physiological and lifestyle monitoring, 2) models and molecular biomarkers for predicting the onset and assessing the progress of DM, and 3) modeling and control methods for regulating glucose levels. RESULTS: Glucose and lifestyle sensing technologies are continuously evolving with current research focusing on the development of noninvasive sensors for accurate glucose monitoring. A wide range of modeling, classification, clustering, and control approaches have been deployed for the development of the CDSS for diabetes management. Sophisticated multiscale, multilevel modeling frameworks taking into account information from behavioral down to molecular level are necessary to reveal correlations and patterns indicating the onset and evolution of DM. CONCLUSION: Integration of data originating from sensor-based systems and electronic health records combined with smart data analytics methods and powerful user centered approaches enable the shift toward preventive, predictive, personalized, and participatory diabetes care. SIGNIFICANCE: The potential of sensing and predictive modeling approaches toward improving diabetes management is highlighted and related challenges are identified.

摘要

目的:糖尿病(DM)的高患病率以及不良的健康结果,再加上治疗和护理成本的不断攀升,使得有必要关注该疾病的预防、早期检测和改善管理。本文旨在介绍和讨论用于血糖和生活方式监测的传感器以及促进自我疾病管理并支持医疗保健专业人员进行决策的临床决策支持系统(CDSS)的最新成果。 方法:进行了一项批判性文献综述分析,重点关注以下方面的进展:1)用于生理和生活方式监测的传感器;2)用于预测糖尿病发病和评估其进展的模型和分子生物标志物;3)调节血糖水平的建模和控制方法。 结果:血糖和生活方式传感技术在不断发展,当前的研究重点是开发用于精确血糖监测的非侵入性传感器。已采用广泛的建模、分类、聚类和控制方法来开发用于糖尿病管理的CDSS。需要复杂的多尺度、多层次建模框架,考虑从行为到分子水平的信息,以揭示表明糖尿病发病和演变的相关性和模式。 结论:将基于传感器的系统和电子健康记录产生的数据与智能数据分析方法以及强大的以用户为中心的方法相结合,能够实现向预防性、预测性、个性化和参与性糖尿病护理的转变。 意义:强调了传感和预测建模方法在改善糖尿病管理方面的潜力,并确定了相关挑战。

相似文献

[1]
A Review of Emerging Technologies for the Management of Diabetes Mellitus.

IEEE Trans Biomed Eng. 2015-12

[2]
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.

Artif Intell Med. 2019-7-26

[3]

2017-8-21

[4]
Electrochemical glucose sensors in diabetes management: an updated review (2010-2020).

Chem Soc Rev. 2020-11-7

[5]
A mobile and web-based clinical decision support and monitoring system for diabetes mellitus patients in primary care: a study protocol for a randomized controlled trial.

BMC Med Inform Decis Mak. 2017-11-29

[6]
Applications of Clinical Decision Support Systems in Diabetes Care: Scoping Review.

J Med Internet Res. 2023-12-8

[7]
Review of electronic decision-support tools for diabetes care: a viable option for low- and middle-income countries?

J Diabetes Sci Technol. 2011-5-1

[8]
Wearable Electrochemical Glucose Sensors in Diabetes Management: A Comprehensive Review.

Chem Rev. 2023-6-28

[9]
The effectiveness of continuous subcutaneous insulin pumps with continuous glucose monitoring in outpatient adolescents with type 1 diabetes: A systematic review.

JBI Libr Syst Rev. 2012

[10]
EMPOWER--pathways for supporting the self-management of diabetes patients.

Stud Health Technol Inform. 2015

引用本文的文献

[1]
Better Blood Pressure Control for Stroke Patients in the ICU: A Deep Reinforcement Learning with Supervised Guidance Approach for Adaptive Infusion Rate Tuning.

AMIA Annu Symp Proc. 2025-5-22

[2]
RFFE - Random Forest Fuzzy Entropy for the classification of Diabetes Mellitus.

AIMS Public Health. 2023-5-23

[3]
Effects of a Novel Blood Glucose Forecasting Feature on Glycemic Management and Logging in Adults With Type 2 Diabetes Using One Drop: Retrospective Cohort Study.

JMIR Diabetes. 2022-5-3

[4]
A Multimodal Approach for Real Time Recognition of Engagement towards Adaptive Serious Games for Health.

Sensors (Basel). 2022-3-23

[5]
Multi-step ahead predictive model for blood glucose concentrations of type-1 diabetic patients.

Sci Rep. 2021-12-21

[6]
Diabetes self-management in online health communities: an information exchange perspective.

BMC Med Inform Decis Mak. 2021-6-28

[7]
Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only.

Sensors (Basel). 2021-2-27

[8]
Improving Accuracy for Diabetes Mellitus Prediction by Using Deepnet.

Online J Public Health Inform. 2020-7-24

[9]
Design and Development of Diabetes Management System Using Machine Learning.

Int J Telemed Appl. 2020-7-16

[10]
User Centered Design to Improve Information Exchange in Diabetes Care Through eHealth : Results from a Small Scale Exploratory Study.

J Med Syst. 2019-11-18

本文引用的文献

[1]
Mining Association Rules for Neurobehavioral and Motor Disorders in Children Diagnosed with Cerebral Palsy.

Proc (IEEE Int Conf Healthc Inform). 2013-9

[2]
PHARM - Association Rule Mining for Predictive Health.

IFMBE Proc. 2014

[3]
icuARM-An ICU Clinical Decision Support System Using Association Rule Mining.

IEEE J Transl Eng Health Med. 2013-11-21

[4]
Continuous Glucose Monitoring Systems: A Review.

Diagnostics (Basel). 2013-10-29

[5]
Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring.

Med Biol Eng Comput. 2015-12

[6]
Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes.

Diabetes Obes Metab. 2015-2-16

[7]
Designing an artificial pancreas architecture: the AP@home experience.

Med Biol Eng Comput. 2015-12

[8]
Overnight closed-loop insulin delivery in young people with type 1 diabetes: a free-living, randomized clinical trial.

Diabetes Care. 2014

[9]
Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.

Nat Genet. 2014-2-9

[10]
Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization.

Diabetes Care. 2014-1-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索