文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种面向健康适应型严肃游戏的实时参与识别的多模态方法。

A Multimodal Approach for Real Time Recognition of Engagement towards Adaptive Serious Games for Health.

机构信息

School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece.

Biomedial Simulations and Imaging Laboratory, National Technical University of Athens, 15780 Athens, Greece.

出版信息

Sensors (Basel). 2022 Mar 23;22(7):2472. doi: 10.3390/s22072472.


DOI:10.3390/s22072472
PMID:35408088
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9002748/
Abstract

In this article, an unobtrusive and affordable sensor-based multimodal approach for real time recognition of engagement in serious games (SGs) for health is presented. This approach aims to achieve individualization in SGs that promote self-health management. The feasibility of the proposed approach was investigated by designing and implementing an experimental process focusing on real time recognition of engagement. Twenty-six participants were recruited and engaged in sessions with a SG that promotes food and nutrition literacy. Data were collected during play from a heart rate sensor, a smart chair, and in-game metrics. Perceived engagement, as an approximation to the ground truth, was annotated continuously by participants. An additional group of six participants were recruited for smart chair calibration purposes. The analysis was conducted in two directions, firstly investigating associations between identified sitting postures and perceived engagement, and secondly evaluating the predictive capacity of features extracted from the multitude of sources towards the ground truth. The results demonstrate significant associations and predictive capacity from all investigated sources, with a multimodal feature combination displaying superiority over unimodal features. These results advocate for the feasibility of real time recognition of engagement in adaptive serious games for health by using the presented approach.

摘要

本文提出了一种基于传感器的、不引人注目的、经济实惠的多模态方法,用于实时识别健康类严肃游戏(SG)中的参与度。这种方法旨在实现个性化的 SG,以促进自我健康管理。通过设计和实施一个专注于实时识别参与度的实验过程,研究了所提出方法的可行性。招募了 26 名参与者,并让他们参与了一个促进食物和营养知识的 SG 游戏。在游戏过程中,从心率传感器、智能椅子和游戏内指标中收集数据。参与者不断地对感知到的参与度进行注释,作为对真实情况的近似值。另外招募了六名参与者进行智能椅子校准。分析从两个方向进行,首先调查识别出的坐姿与感知到的参与度之间的关联,其次评估从多种来源提取的特征对真实情况的预测能力。结果表明,所有被调查的来源都具有显著的相关性和预测能力,多模态特征组合的表现优于单模态特征。这些结果表明,通过使用所提出的方法,实时识别自适应健康类严肃游戏中的参与度是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/f9991e161866/sensors-22-02472-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/1ecdc5eed79e/sensors-22-02472-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/a8912aa87aa4/sensors-22-02472-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/89b6d10f1d14/sensors-22-02472-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/2e1f9352e907/sensors-22-02472-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/95955eba06de/sensors-22-02472-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/1612fcbce1a0/sensors-22-02472-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/2fdd10979bb7/sensors-22-02472-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/ebfc99e480b7/sensors-22-02472-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/b365be98a982/sensors-22-02472-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/4796262c99d1/sensors-22-02472-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/5f70b17d44d3/sensors-22-02472-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/1d5b17122956/sensors-22-02472-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/f9991e161866/sensors-22-02472-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/1ecdc5eed79e/sensors-22-02472-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/a8912aa87aa4/sensors-22-02472-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/89b6d10f1d14/sensors-22-02472-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/2e1f9352e907/sensors-22-02472-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/95955eba06de/sensors-22-02472-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/1612fcbce1a0/sensors-22-02472-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/2fdd10979bb7/sensors-22-02472-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/ebfc99e480b7/sensors-22-02472-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/b365be98a982/sensors-22-02472-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/4796262c99d1/sensors-22-02472-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/5f70b17d44d3/sensors-22-02472-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/1d5b17122956/sensors-22-02472-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c918/9002748/f9991e161866/sensors-22-02472-g013.jpg

相似文献

[1]
A Multimodal Approach for Real Time Recognition of Engagement towards Adaptive Serious Games for Health.

Sensors (Basel). 2022-3-23

[2]
Designing Video Games for Nutrition Education: A Participatory Approach.

J Nutr Educ Behav. 2021-10

[3]
Learning decision making through serious games.

Clin Teach. 2016-8

[4]
Serious Game Design and Clinical Improvement in Physical Rehabilitation: Systematic Review.

JMIR Serious Games. 2021-9-23

[5]
Assistive HCI-Serious Games Co-design Insights: The Case Study of i-PROGNOSIS Personalized Game Suite for Parkinson's Disease.

Front Psychol. 2021-1-15

[6]
Design Features Associated with User Engagement in Digital Games for Healthy Lifestyle Promotion in Youth: A Systematic Review of Qualitative and Quantitative Studies.

Games Health J. 2020-1-10

[7]
Serious Games, Gamification, and Serious Mental Illness: A Scoping Review.

Psychiatr Serv. 2019-10-23

[8]
Adaptive Rehabilitation Bots in Serious Games.

Sensors (Basel). 2020-12-9

[9]
Developing and Evaluating a Mixed Sensor Smart Chair System for Real-Time Posture Classification: Combining Pressure and Distance Sensors.

IEEE J Biomed Health Inform. 2021-5

[10]
Work Engagement Recognition in Smart Office.

Procedia Comput Sci. 2022

引用本文的文献

[1]
The ENDORSE Feasibility Study: Exploring the Use of M-Health, Artificial Intelligence and Serious Games for the Management of Childhood Obesity.

Nutrients. 2023-3-17

[2]
Artificial Intelligence-Driven Serious Games in Health Care: Scoping Review.

JMIR Serious Games. 2022-11-29

本文引用的文献

[1]
Architecting Intelligent Smart Serious Games for Healthcare Applications: A Technical Perspective.

Sensors (Basel). 2022-1-21

[2]
Design and Development of a Sitting Posture Recognition System.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[3]
An Ontology-Based Serious Game Design for the Development of Nutrition and Food Literacy Skills.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[4]
Video Games and Stress: How Stress Appraisals and Game Content Affect Cardiovascular and Emotion Outcomes.

Front Psychol. 2019-5-7

[5]
A Sitting Posture Monitoring Instrument to Assess Different Levels of Cognitive Engagement.

Sensors (Basel). 2019-1-22

[6]
An Overview of Heart Rate Variability Metrics and Norms.

Front Public Health. 2017-9-28

[7]
A systematic review of gamification in e-Health.

J Biomed Inform. 2017-7

[8]
Serious Games and Gamification for Mental Health: Current Status and Promising Directions.

Front Psychiatry. 2017-1-10

[9]
Validity of (Ultra-)Short Recordings for Heart Rate Variability Measurements.

PLoS One. 2015-9-28

[10]
A Review of Emerging Technologies for the Management of Diabetes Mellitus.

IEEE Trans Biomed Eng. 2015-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索