Suppr超能文献

铈调节甲基弯曲菌OB3b中替代甲醇脱氢酶的表达。

Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b.

作者信息

Farhan Ul Haque Muhammad, Kalidass Bhagyalakshmi, Bandow Nathan, Turpin Erick A, DiSpirito Alan A, Semrau Jeremy D

机构信息

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA.

Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA.

出版信息

Appl Environ Microbiol. 2015 Nov;81(21):7546-52. doi: 10.1128/AEM.02542-15. Epub 2015 Aug 21.

Abstract

Methanotrophs have multiple methane monooxygenases that are well known to be regulated by copper, i.e., a "copper switch." At low copper/biomass ratios the soluble methane monooxygenase (sMMO) is expressed while expression and activity of the particulate methane monooxygenase (pMMO) increases with increasing availability of copper. In many methanotrophs there are also multiple methanol dehydrogenases (MeDHs), one based on Mxa and another based on Xox. Mxa-MeDH is known to have calcium in its active site, while Xox-MeDHs have been shown to have rare earth elements in their active site. We show here that the expression levels of Mxa-MeDH and Xox-MeDH in Methylosinus trichosporium OB3b significantly decreased and increased, respectively, when grown in the presence of cerium but the absence of copper compared to the absence of both metals. Expression of sMMO and pMMO was not affected. In the presence of copper, the effect of cerium on gene expression was less significant, i.e., expression of Mxa-MeDH in the presence of copper and cerium was slightly lower than in the presence of copper alone, but Xox-MeDH was again found to increase significantly. As expected, the addition of copper caused sMMO and pMMO expression levels to significantly decrease and increase, respectively, but the simultaneous addition of cerium had no discernible effect on MMO expression. As a result, it appears Mxa-MeDH can be uncoupled from methane oxidation by sMMO in M. trichosporium OB3b but not from pMMO.

摘要

甲烷氧化菌具有多种甲烷单加氧酶,众所周知这些酶受铜的调控,即存在一个“铜开关”。在低铜/生物量比时,可溶性甲烷单加氧酶(sMMO)表达,而颗粒性甲烷单加氧酶(pMMO)的表达和活性则随着铜可利用性的增加而增加。在许多甲烷氧化菌中还存在多种甲醇脱氢酶(MeDHs),一种基于Mxa,另一种基于Xox。已知Mxa-MeDH的活性位点含有钙,而Xox-MeDHs的活性位点已被证明含有稀土元素。我们在此表明,与两种金属都不存在的情况相比,在存在铈但不存在铜的条件下培养时,甲基弯曲菌OB3b中Mxa-MeDH和Xox-MeDH的表达水平分别显著降低和升高。sMMO和pMMO的表达不受影响。在存在铜的情况下,铈对基因表达的影响较小,即存在铜和铈时Mxa-MeDH的表达略低于仅存在铜时,但Xox-MeDH再次被发现显著增加。正如预期的那样,添加铜分别导致sMMO和pMMO的表达水平显著降低和升高,但同时添加铈对MMO的表达没有明显影响。因此,在甲基弯曲菌OB3b中,Mxa-MeDH似乎可以与sMMO介导的甲烷氧化解偶联,但不能与pMMO介导的甲烷氧化解偶联。

相似文献

1
Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b.
Appl Environ Microbiol. 2015 Nov;81(21):7546-52. doi: 10.1128/AEM.02542-15. Epub 2015 Aug 21.
3
Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b.
FEMS Microbiol Lett. 2016 Jul;363(13). doi: 10.1093/femsle/fnw129. Epub 2016 May 12.
4
Copper and cerium-regulated gene expression in Methylosinus trichosporium OB3b.
Appl Microbiol Biotechnol. 2017 Dec;101(23-24):8499-8516. doi: 10.1007/s00253-017-8572-2. Epub 2017 Oct 14.
6
Carbon source regulation of gene expression in Methylosinus trichosporium OB3b.
Appl Microbiol Biotechnol. 2017 May;101(9):3871-3879. doi: 10.1007/s00253-017-8121-z. Epub 2017 Jan 20.
8
Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper.
Appl Environ Microbiol. 2015 Feb;81(3):1024-31. doi: 10.1128/AEM.03151-14. Epub 2014 Nov 21.
9
Use of allylthiourea to produce soluble methane monooxygenase in the presence of copper.
Appl Microbiol Biotechnol. 2009 Feb;82(2):333-9. doi: 10.1007/s00253-008-1814-6. Epub 2008 Dec 24.
10
Production of soluble methane monooxygenase during growth of Methylosinus trichosporium on methanol.
J Biotechnol. 2009 Jan 1;139(1):78-83. doi: 10.1016/j.jbiotec.2008.09.005. Epub 2008 Oct 4.

引用本文的文献

1
Non-growth substrate ethane perturbs core methanotrophy in obligate methanotroph OB3b upon nutrient availability.
Appl Environ Microbiol. 2025 Aug 20;91(8):e0096925. doi: 10.1128/aem.00969-25. Epub 2025 Jul 10.
2
Emerging role of rare earth elements in biomolecular functions.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wrae241.
3
Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases.
Chem Rev. 2024 Feb 14;124(3):1288-1320. doi: 10.1021/acs.chemrev.3c00727. Epub 2024 Feb 2.
5
Different lanthanide elements induce strong gene expression changes in a lanthanide-accumulating methylotroph.
Microbiol Spectr. 2023 Dec 12;11(6):e0086723. doi: 10.1128/spectrum.00867-23. Epub 2023 Nov 1.
6
Comparative genomic analysis of Methylocystis sp. MJC1 as a platform strain for polyhydroxybutyrate biosynthesis.
PLoS One. 2023 May 10;18(5):e0284846. doi: 10.1371/journal.pone.0284846. eCollection 2023.
8
Siderophore for Lanthanide and Iron Uptake for Methylotrophy and Plant Growth Promotion in Strain 22A.
Front Microbiol. 2022 Jul 7;13:921635. doi: 10.3389/fmicb.2022.921635. eCollection 2022.
9
Methanol utilizers of the rhizosphere and phyllosphere of a common grass and forb host species.
Environ Microbiome. 2022 Jul 6;17(1):35. doi: 10.1186/s40793-022-00428-y.

本文引用的文献

1
[Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects (review)].
Prikl Biokhim Mikrobiol. 2015 Mar-Apr;51(2):140-50. doi: 10.7868/s0555109915020087.
2
Zinc regulates a switch between primary and alternative S18 ribosomal proteins in Mycobacterium tuberculosis.
Mol Microbiol. 2015 Jul;97(2):263-80. doi: 10.1111/mmi.13022. Epub 2015 May 15.
3
Methane as a resource: can the methanotrophs add value?
Environ Sci Technol. 2015 Apr 7;49(7):4001-18. doi: 10.1021/es504242n. Epub 2015 Mar 10.
5
XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”.
Appl Environ Microbiol. 2015 Feb;81(4):1442-51. doi: 10.1128/AEM.03292-14.
6
Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper.
Appl Environ Microbiol. 2015 Feb;81(3):1024-31. doi: 10.1128/AEM.03151-14. Epub 2014 Nov 21.
7
Structure and protein-protein interactions of methanol dehydrogenase from Methylococcus capsulatus (Bath).
Biochemistry. 2014 Oct 7;53(39):6211-9. doi: 10.1021/bi500850j. Epub 2014 Sep 19.
8
Rare earth metals are essential for methanotrophic life in volcanic mudpots.
Environ Microbiol. 2014 Jan;16(1):255-64. doi: 10.1111/1462-2920.12249. Epub 2013 Sep 12.
9
Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b.
Appl Environ Microbiol. 2013 Oct;79(19):5918-26. doi: 10.1128/AEM.01673-13. Epub 2013 Jul 19.
10
Methanobactin and MmoD work in concert to act as the 'copper-switch' in methanotrophs.
Environ Microbiol. 2013 Nov;15(11):3077-86. doi: 10.1111/1462-2920.12150. Epub 2013 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验