Suppr超能文献

单体β-淀粉样蛋白与1型胰岛素样生长因子受体相互作用,为神经元提供能量供应。

Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons.

作者信息

Giuffrida Maria L, Tomasello Marianna F, Pandini Giuseppe, Caraci Filippo, Battaglia Giuseppe, Busceti Carla, Di Pietro Paola, Pappalardo Giuseppe, Attanasio Francesco, Chiechio Santina, Bagnoli Silvia, Nacmias Benedetta, Sorbi Sandro, Vigneri Riccardo, Rizzarelli Enrico, Nicoletti Ferdinando, Copani Agata

机构信息

National Research Council, Institute of Biostructure and Bioimaging Catania, Italy.

National Research Council, Institute of Biostructure and Bioimaging Catania, Italy ; PhD Program in Neuropharmacology, University of Catania Catania, Italy.

出版信息

Front Cell Neurosci. 2015 Aug 7;9:297. doi: 10.3389/fncel.2015.00297. eCollection 2015.

Abstract

ß-amyloid (Aß1-42) is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1-42self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer's disease (AD). However, Aß1-42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1-42 in neuronal function is largely unknown. We report that the monomer of Aß1-42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1-42 was added. These data suggest that Aß1-42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1-42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice.

摘要

β-淀粉样蛋白(Aβ1-42)是由跨膜1型蛋白淀粉样前体蛋白经蛋白水解切割产生的。在病理条件下,Aβ1-42会自我聚集成寡聚体,导致突触功能障碍和神经元丢失,被认为是阿尔茨海默病(AD)的罪魁祸首。然而,在生理浓度下,Aβ1-42主要以单体形式存在,单体Aβ1-42在神经元功能中的精确作用在很大程度上尚不清楚。我们报告称,Aβ1-42单体可激活1型胰岛素样生长因子受体,并通过促进葡萄糖转运蛋白Glut3从胞质溶胶转运至质膜,增强神经元和外周细胞对葡萄糖的摄取。在神经元中,阻断内源性Aβ产生后,活性依赖性葡萄糖摄取减弱,而在脑脊液Aβ存在的情况下可重新建立。APP基因敲除的神经元无法增强去极化刺激的葡萄糖摄取,除非添加外源性单体Aβ1-42。这些数据表明,Aβ1-42单体对于维持神经元葡萄糖稳态至关重要。因此,外源性Aβ1-42单体能够挽救AD突变小鼠脑片中观察到的低水平葡萄糖消耗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d1f/4528168/e4f5fc7b66e3/fncel-09-00297-g0001.jpg

相似文献

1
Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons.
Front Cell Neurosci. 2015 Aug 7;9:297. doi: 10.3389/fncel.2015.00297. eCollection 2015.
2
Insulin regulates neuronal glucose uptake by promoting translocation of glucose transporter GLUT3.
Exp Neurol. 2006 Mar;198(1):48-53. doi: 10.1016/j.expneurol.2005.10.035. Epub 2005 Dec 9.
3
Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.
Prog Neurobiol. 2013 Sep;108:21-43. doi: 10.1016/j.pneurobio.2013.06.004. Epub 2013 Jul 11.
4
Differential regulation of insulin signalling by monomeric and oligomeric amyloid beta-peptide.
Brain Commun. 2022 Sep 24;4(5):fcac243. doi: 10.1093/braincomms/fcac243. eCollection 2022.
7
Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.
J Neurosci. 2015 Apr 8;35(14):5851-9. doi: 10.1523/JNEUROSCI.5180-14.2015.
9

引用本文的文献

4
Alzheimer's disease: an axonal injury disease?
Front Aging Neurosci. 2023 Oct 19;15:1264448. doi: 10.3389/fnagi.2023.1264448. eCollection 2023.
5
Why Is Iron Deficiency/Anemia Linked to Alzheimer's Disease and Its Comorbidities, and How Is It Prevented?
Biomedicines. 2023 Aug 30;11(9):2421. doi: 10.3390/biomedicines11092421.
7
The therapeutic potential of carnosine: Focus on cellular and molecular mechanisms.
Curr Res Pharmacol Drug Discov. 2023 Mar 7;4:100153. doi: 10.1016/j.crphar.2023.100153. eCollection 2023.
8
Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future.
Signal Transduct Target Ther. 2023 Jun 30;8(1):248. doi: 10.1038/s41392-023-01484-7.
9
Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders.
Front Mol Neurosci. 2023 May 18;16:1193590. doi: 10.3389/fnmol.2023.1193590. eCollection 2023.
10
Aβ Fragment as an Anti-Fibrillogenic and Neuroprotective Agent: Advancing toward Efficient Alzheimer's Disease Treatment.
ACS Chem Neurosci. 2023 Mar 15;14(6):1126-1136. doi: 10.1021/acschemneuro.2c00720. Epub 2023 Mar 1.

本文引用的文献

1
Allosteric targeting of receptor tyrosine kinases.
Nat Biotechnol. 2014 Nov;32(11):1113-20. doi: 10.1038/nbt.3028.
3
Alzheimer's disease and type 2 diabetes: multiple mechanisms contribute to interactions.
Curr Diab Rep. 2014 Apr;14(4):476. doi: 10.1007/s11892-014-0476-2.
4
Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices.
J Cereb Blood Flow Metab. 2014 Mar;34(3):397-407. doi: 10.1038/jcbfm.2013.222. Epub 2013 Dec 11.
5
Alternations of central insulin-like growth factor-1 sensitivity in APP/PS1 transgenic mice and neuronal models.
J Neurosci Res. 2013 May;91(5):717-25. doi: 10.1002/jnr.23201. Epub 2013 Feb 12.
6
Aβ1-15/16 as a potential diagnostic marker in neurodegenerative diseases.
Neuromolecular Med. 2013 Mar;15(1):169-79. doi: 10.1007/s12017-012-8208-8. Epub 2012 Dec 7.
9
Therapeutic targets of brain insulin resistance in sporadic Alzheimer's disease.
Front Biosci (Elite Ed). 2012 Jan 1;4(4):1582-605. doi: 10.2741/e482.
10
Metabolic reserve as a determinant of cognitive aging.
J Alzheimers Dis. 2012;30 Suppl 2(0 2):S5-13. doi: 10.3233/JAD-2011-110899.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验