Laboratoire de Physique et Chimie des Nano-Objets, LPCNO, UMR5215 INSA-UPS-CNRS, Université de Toulouse; Institut National des Sciences Appliquées , 135 avenue de Rangueil, 31077 Toulouse, France.
Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES-CNRS), 29 rue Jeanne Marvig, B.P. 94347, 31055 Toulouse, France.
ACS Nano. 2015 Oct 27;9(10):9665-77. doi: 10.1021/acsnano.5b04524. Epub 2015 Sep 4.
Chemical methods offer the possibility to synthesize a large panel of nanostructures of various materials with promising properties. One of the main limitations to a mass market development of nanostructure based devices is the integration at a moderate cost of nano-objects into smart architectures. Here we develop a general approach by adapting the seed-mediated solution phase synthesis of nanocrystals in order to directly grow them on crystalline thin films. Using a Co precursor, single-crystalline Co nanowires are directly grown on metallic films and present different spatial orientations depending on the crystalline symmetry of the film used as a 2D seed for Co nucleation. Using films exposing 6-fold symmetry surfaces such as Pt(111), Au(111), and Co(0001), the Co heterogeneous nucleation and epitaxial growth leads to vertical nanowires self-organized in dense and large scale arrays. On the other hand, using films presenting 4-fold symmetry surfaces such as Pt(001) and Cu(001), the Co growth leads to slanted wires in discrete directions. The generality of the concept is demonstrated with the use of a Fe precursor which results in Fe nanostructures on metallic films with different growth orientations which depend on the 6-fold/4-fold symmetry of the film. This approach of solution epitaxial growth combines the advantages of chemistry in solution in producing shape-controlled and monodisperse metallic nanocrystals, and of seeded growth on an ad hoc metallic film that efficiently controls orientation through epitaxy. It opens attractive opportunities for the integration of nanocrystals in planar devices.
化学方法提供了合成各种具有前景材料的大量纳米结构的可能性。基于纳米结构的器件要实现大规模市场化发展的主要限制之一是,以适中的成本将纳米物体集成到智能结构中。在这里,我们通过调整纳米晶的种子介导溶液相合成方法,开发了一种通用方法,以便直接在晶体薄膜上生长纳米晶。使用 Co 前体,单晶 Co 纳米线直接生长在金属薄膜上,并根据用作 Co 成核二维种子的薄膜的晶体对称性呈现出不同的空间取向。使用暴露具有 6 重对称性表面的薄膜,例如 Pt(111)、Au(111)和 Co(0001),Co 的不均匀成核和外延生长导致垂直纳米线自组织成密集且大规模的阵列。另一方面,使用具有 4 重对称性表面的薄膜,例如 Pt(001)和 Cu(001),Co 的生长导致离散方向上的倾斜线。使用 Fe 前体证明了该概念的通用性,导致 Fe 纳米结构在具有不同生长取向的金属薄膜上生长,这取决于薄膜的 6 重/4 重对称性。这种溶液外延生长的方法结合了化学在溶液中生产形状可控和单分散金属纳米晶的优势,以及在特定金属薄膜上进行种子生长的优势,通过外延有效地控制取向。它为纳米晶在平面器件中的集成提供了有吸引力的机会。