Suppr超能文献

在气相色谱-质谱联用分析之前,采用羧基化碳纳米球涂层固相微萃取法对环境水样中的辛基酚和壬基酚进行富集与测定。

Enrichment and determination of octylphenol and nonylphenol in environmental water samples by solid-phase microextraction with carboxylated carbon nano-spheres coating prior to gas chromatography-mass spectrometry.

作者信息

Gong Sheng-Xiang, Wang Xia, Li Lei, Wang Ming-Lin, Zhao Ru-Song

机构信息

College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.

Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Centre, Shandong Academy of Sciences, Jinan, 250014, China.

出版信息

Anal Bioanal Chem. 2015 Nov;407(29):8673-9. doi: 10.1007/s00216-015-8906-9. Epub 2015 Aug 25.

Abstract

In this paper, a novel and simple method for the sensitive determination of endocrine disrupter compounds octylphenol (OP) and nonylphenol (NP) in environmental water samples has been developed using solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. Carboxylated carbon nano-spheres (CNSs-COOH) are used as a novel SPME coating via physical adhesion. The CNSs-COOH fiber possessed higher adsorption efficiency than 100 μm polydimethysiloxane (PDMS) fiber and was similar to 85 μm polyacrylate (PA) fiber for the two analytes. Important parameters, such as extraction time, pH, agitation speed, ionic strength, and desorption temperature and time, were investigated and optimized in detail. Under the optimal parameters, the developed method achieved low limits of detection of 0.130.14 ng·L(-1) and a wide linear range of 11000 ng·(-1) for OP and NP. The novel method was validated with several real environmental water samples, and satisfactory results were obtained.

摘要

本文开发了一种新颖且简单的方法,用于灵敏测定环境水样中的内分泌干扰化合物辛基酚(OP)和壬基酚(NP),该方法采用固相微萃取(SPME)结合气相色谱 - 质谱联用技术。羧基化碳纳米球(CNSs - COOH)通过物理附着用作新型的SPME涂层。对于这两种分析物,CNSs - COOH纤维比100μm聚二甲基硅氧烷(PDMS)纤维具有更高的吸附效率,且与85μm聚丙烯酸酯(PA)纤维相近。详细研究并优化了诸如萃取时间、pH值、搅拌速度、离子强度以及解吸温度和时间等重要参数。在最佳参数条件下,所开发的方法对OP和NP实现了低至0.130.14 ng·L⁻¹的检测限以及11000 ng·L⁻¹的宽线性范围。该新方法通过多个实际环境水样进行了验证,并获得了满意的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验