Suppr超能文献

荧光显微镜和计算机建模揭示活细胞中c-Fos转录因子同源二聚化的证据

Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling.

作者信息

Szalóki Nikoletta, Krieger Jan Wolfgang, Komáromi István, Tóth Katalin, Vámosi György

机构信息

Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary.

German Cancer Research Center (DKFZ), Biophysics of Macromolecules, Heidelberg, Germany.

出版信息

Mol Cell Biol. 2015 Nov;35(21):3785-98. doi: 10.1128/MCB.00346-15. Epub 2015 Aug 24.

Abstract

The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos-c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development.

摘要

c-Fos和c-Jun转录因子是激活蛋白1(AP-1)复合物的成员,它们形成异源二聚体,并通过碱性亮氨酸拉链与DNA结合,从而调节细胞周期、细胞凋亡、细胞分化等过程。纯化的c-Jun亮氨酸拉链片段也能形成稳定的同源二聚体,而在早期的体外研究中发现c-Fos亮氨酸拉链同源二聚体的稳定性要低得多。c-Fos在肿瘤中过表达的重要性以及文献中关于c-Fos同源二聚化的争议促使我们研究Fos同源二聚化。对转染了荧光蛋白标记的c-Fos的活HeLa细胞进行荧光共振能量转移(FRET)和荧光相关光谱数据的分子亮度分析表明,c-Fos形成了同源二聚体。我们开发了一种方法来确定转染的和内源性的c-Fos和c-Jun的绝对浓度,这使我们能够通过FRET滴定确定c-Fos同源二聚体(Kd = 6.7 ± 1.7 μM)和c-Fos-c-Jun异源二聚体(约10至100 nM)的解离常数。成像荧光交叉相关光谱(SPIM-FCCS)和分子动力学建模证实,c-Fos同源二聚体稳定结合,并能与染色质结合。我们的结果确立了c-Fos同源二聚体作为AP-1复合物的一种新形式,它可能是c-Fos过表达组织中的一种自主转录因子,并可能促进肿瘤发展。

相似文献

2
Conformation of the c-Fos/c-Jun complex in vivo: a combined FRET, FCCS, and MD-modeling study.
Biophys J. 2008 Apr 1;94(7):2859-68. doi: 10.1529/biophysj.107.120766. Epub 2007 Dec 7.
3
DNA binding and transactivation properties of Fos variants with homodimerization capacity.
Nucleic Acids Res. 1997 Aug 1;25(15):3026-33. doi: 10.1093/nar/25.15.3026.
4
Long-range electrostatic interactions influence the orientation of Fos-Jun binding at AP-1 sites.
J Mol Biol. 2001 Jan 19;305(3):411-27. doi: 10.1006/jmbi.2000.4286.
8
Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation.
Mol Cell Biol. 2005 Aug;25(16):6964-79. doi: 10.1128/MCB.25.16.6964-6979.2005.

引用本文的文献

1
A KSHV RNA-binding protein promotes FOS to inhibit nuclease AEN and transactivate RGS2 for AKT phosphorylation.
mBio. 2025 Jan 8;16(1):e0317224. doi: 10.1128/mbio.03172-24. Epub 2024 Dec 10.
4
KSHV promotes oncogenic FOS to inhibit nuclease AEN and transactivate RGS2 for AKT phosphorylation.
bioRxiv. 2024 Jan 28:2024.01.27.577582. doi: 10.1101/2024.01.27.577582.
5
Expression of PVRL4, a molecular target for cancer treatment, is transcriptionally regulated by FOS.
Oncol Rep. 2024 Jan;51(1). doi: 10.3892/or.2023.8676. Epub 2023 Dec 8.
7
Cell-specific expression of the gene is regulated by enhancer elements.
Front Mol Biosci. 2023 Feb 7;10:1111511. doi: 10.3389/fmolb.2023.1111511. eCollection 2023.
10
An Approach to Derive Functional Peptide Inhibitors of Transcription Factor Activity.
JACS Au. 2022 Apr 6;2(4):996-1006. doi: 10.1021/jacsau.2c00105. eCollection 2022 Apr 25.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
5
High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
Cytometry A. 2013 Sep;83(9):818-29. doi: 10.1002/cyto.a.22315. Epub 2013 Jul 10.
6
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
8
Quantitative fluorescence imaging of protein diffusion and interaction in living cells.
Nat Biotechnol. 2011 Aug 7;29(9):835-9. doi: 10.1038/nbt.1928.
9
Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications.
Appl Spectrosc. 2011 Apr;65(4):115A-124A. doi: 10.1366/10-06224.
10
Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions.
Ann Biomed Eng. 2011 Apr;39(4):1224-34. doi: 10.1007/s10439-010-0225-x. Epub 2010 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验