Suppr超能文献

阿尔茨海默病中铁稳态失衡与淀粉样蛋白生成之间的关系:同一枚硬币的两面。

The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides of the same coin.

作者信息

Peters Douglas G, Connor James R, Meadowcroft Mark D

机构信息

Department of Neurosurgery, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Neural and Behavioral Sciences, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.

Department of Neurosurgery, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.

出版信息

Neurobiol Dis. 2015 Sep;81:49-65. doi: 10.1016/j.nbd.2015.08.007. Epub 2015 Aug 22.

Abstract

The dysregulation of iron metabolism in Alzheimer's disease is not accounted for in the current framework of the amyloid cascade hypothesis. Accumulating evidence suggests that impaired iron homeostasis is an early event in Alzheimer's disease progression. Iron dyshomeostasis leads to a loss of function in several enzymes requiring iron as a cofactor, the formation of toxic oxidative species, and the elevated production of beta-amyloid proteins. Several common genetic polymorphisms that cause increased iron levels and dyshomeostasis have been associated with Alzheimer's disease but the pathoetiology is not well understood. A full picture is necessary to explain how heterogeneous circumstances lead to iron loading and amyloid deposition. There is evidence to support a causative interplay between the concerted loss of iron homeostasis and amyloid plaque formation. We hypothesize that iron misregulation and beta-amyloid plaque pathology are synergistic in the process of neurodegeneration and ultimately cause a downward cascade of events that spiral into the manifestation of Alzheimer's disease. In this review, we amalgamate recent findings of brain iron metabolism in healthy versus Alzheimer's disease brains and consider unique mechanisms of iron transport in different brain cells as well as how disturbances in iron regulation lead to disease etiology and propagate Alzheimer's pathology.

摘要

阿尔茨海默病中铁代谢的失调在当前的淀粉样蛋白级联假说框架中未得到解释。越来越多的证据表明,铁稳态受损是阿尔茨海默病进展过程中的早期事件。铁稳态失调导致几种需要铁作为辅因子的酶功能丧失、有毒氧化物质的形成以及β-淀粉样蛋白的产生增加。几种导致铁水平升高和稳态失调的常见基因多态性与阿尔茨海默病有关,但病理病因尚不清楚。需要全面了解才能解释不同情况如何导致铁负荷和淀粉样蛋白沉积。有证据支持铁稳态协同丧失与淀粉样斑块形成之间存在因果相互作用。我们假设铁调节异常和β-淀粉样斑块病理在神经退行性变过程中具有协同作用,并最终导致一系列事件的恶性循环,进而引发阿尔茨海默病的表现。在这篇综述中,我们整合了健康大脑与阿尔茨海默病大脑中铁代谢的最新研究结果,并考虑了不同脑细胞中铁转运的独特机制,以及铁调节紊乱如何导致疾病病因并促进阿尔茨海默病病理发展。

相似文献

1
The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides of the same coin.
Neurobiol Dis. 2015 Sep;81:49-65. doi: 10.1016/j.nbd.2015.08.007. Epub 2015 Aug 22.
2
Metal dyshomeostasis and oxidative stress in Alzheimer's disease.
Neurochem Int. 2013 Apr;62(5):540-55. doi: 10.1016/j.neuint.2012.08.014. Epub 2012 Sep 8.
3
Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease.
Cell Chem Biol. 2017 Oct 19;24(10):1205-1215.e3. doi: 10.1016/j.chembiol.2017.07.014. Epub 2017 Sep 7.
6
Alzheimer's disease, metal ions and metal homeostatic therapy.
Trends Pharmacol Sci. 2009 Jul;30(7):346-55. doi: 10.1016/j.tips.2009.05.002. Epub 2009 Jun 17.
7
Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease.
Brain. 2016 Mar;139(Pt 3):922-36. doi: 10.1093/brain/awv404. Epub 2016 Jan 26.
8
Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease.
Biomed Res Int. 2016;2016:6701324. doi: 10.1155/2016/6701324. Epub 2016 Jun 2.
9
Untangling amyloid-β, tau, and metals in Alzheimer's disease.
ACS Chem Biol. 2013 May 17;8(5):856-65. doi: 10.1021/cb400080f. Epub 2013 Mar 18.

引用本文的文献

1
Implications of Krüppel-like factor signaling in neuroinflammation for neurodegenerative diseases.
Am J Transl Res. 2025 Apr 15;17(4):3009-3030. doi: 10.62347/MIHM9413. eCollection 2025.
2
Role of iron in brain development, aging, and neurodegenerative diseases.
Ann Med. 2025 Dec;57(1):2472871. doi: 10.1080/07853890.2025.2472871. Epub 2025 Mar 4.
3
Ferric Ammonium Citrate Reduces Claudin-5 Abundance and Function in Primary Mouse Brain Endothelial Cells.
Pharm Res. 2025 Feb;42(2):319-334. doi: 10.1007/s11095-025-03826-2. Epub 2025 Feb 12.
5
Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases.
Int J Mol Sci. 2024 Sep 15;25(18):9950. doi: 10.3390/ijms25189950.
9
The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration.
Int J Mol Sci. 2024 Apr 23;25(9):4581. doi: 10.3390/ijms25094581.

本文引用的文献

1
Escape from bacterial iron piracy through rapid evolution of transferrin.
Science. 2014 Dec 12;346(6215):1362-6. doi: 10.1126/science.1259329.
3
The role of iron in prion disease and other neurodegenerative diseases.
PLoS Pathog. 2014 Sep 18;10(9):e1004335. doi: 10.1371/journal.ppat.1004335. eCollection 2014 Sep.
4
The IRP/IRE system in vivo: insights from mouse models.
Front Pharmacol. 2014 Jul 28;5:176. doi: 10.3389/fphar.2014.00176. eCollection 2014.
6
Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk.
ACS Chem Neurosci. 2014 Sep 17;5(9):837-47. doi: 10.1021/cn500099f. Epub 2014 Aug 1.
8
Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease.
Neurobiol Aging. 2014 Oct;35(10):2288-301. doi: 10.1016/j.neurobiolaging.2014.04.019. Epub 2014 May 1.
9
Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer's disease peptide β-amyloid (1-42).
J R Soc Interface. 2014 Mar 26;11(95):20140165. doi: 10.1098/rsif.2014.0165. Print 2014 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验