Suppr超能文献

使用宫颈上皮的离体细胞核形态测量评估用于分析散射光的混合算法。

Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium.

作者信息

Ho Derek, Drake Tyler K, Bentley Rex C, Valea Fidel A, Wax Adam

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.

Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.

出版信息

Biomed Opt Express. 2015 Jul 7;6(8):2755-65. doi: 10.1364/BOE.6.002755. eCollection 2015 Aug 1.

Abstract

We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis.

摘要

我们评估了一种新的混合算法,该算法利用角分辨低相干干涉测量法(a/LCI)对离体宫颈组织进行测量,以确定细胞核形态。该算法结合了基于米氏理论和连续小波变换的逆光散射分析。使用离体组织数据集对该混合算法进行了验证,并与基于传统米氏理论的分析进行了比较。在初步研究中,该混合算法在区分发育异常和非发育异常活检部位方面与病理学结果达成了100%的一致。值得注意的是,新算法的运行速度比基于传统米氏理论的分析快四倍以上。

相似文献

1
Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium.
Biomed Opt Express. 2015 Jul 7;6(8):2755-65. doi: 10.1364/BOE.6.002755. eCollection 2015 Aug 1.
3
Angular range, sampling and noise considerations for inverse light scattering analysis of nuclear morphology.
J Biophotonics. 2019 Feb;12(2):e201800258. doi: 10.1002/jbio.201800258. Epub 2018 Oct 12.
4
In situ detection of nuclear atypia in Barrett's esophagus by using angle-resolved low-coherence interferometry.
Gastrointest Endosc. 2007 Mar;65(3):487-91. doi: 10.1016/j.gie.2006.10.016.
5
Detection of intestinal dysplasia using angle-resolved low coherence interferometry.
J Biomed Opt. 2011 Oct;16(10):106002. doi: 10.1117/1.3631799.
7
Wavelet transform fast inverse light scattering analysis for size determination of spherical scatterers.
Biomed Opt Express. 2014 Aug 29;5(10):3292-304. doi: 10.1364/BOE.5.003292. eCollection 2014 Oct 1.
8
Deep learning classification of cervical dysplasia using depth-resolved angular light scattering profiles.
Biomed Opt Express. 2021 Jul 19;12(8):4997-5007. doi: 10.1364/BOE.430467. eCollection 2021 Aug 1.
10
Prospective detection of cervical dysplasia with scanning angle-resolved low coherence interferometry.
Biomed Opt Express. 2020 Aug 20;11(9):5197-5211. doi: 10.1364/BOE.401000. eCollection 2020 Sep 1.

引用本文的文献

1
Next-generation endoscopic probe for detection of esophageal dysplasia using combined OCT and angle-resolved low-coherence interferometry.
Biomed Opt Express. 2024 Feb 28;15(3):1943-1958. doi: 10.1364/BOE.515469. eCollection 2024 Mar 1.
3
Deep learning classification of cervical dysplasia using depth-resolved angular light scattering profiles.
Biomed Opt Express. 2021 Jul 19;12(8):4997-5007. doi: 10.1364/BOE.430467. eCollection 2021 Aug 1.
5
Light scattering methods for tissue diagnosis.
Optica. 2019 Apr 20;6(4):479-489. doi: 10.1364/optica.6.000479.
6
Prospective detection of cervical dysplasia with scanning angle-resolved low coherence interferometry.
Biomed Opt Express. 2020 Aug 20;11(9):5197-5211. doi: 10.1364/BOE.401000. eCollection 2020 Sep 1.
7
Spatial scanning of a sample with two-dimensional angle-resolved low-coherence interferometry for analysis of anisotropic scatterers.
Biomed Opt Express. 2020 Jul 20;11(8):4419-4430. doi: 10.1364/BOE.398052. eCollection 2020 Aug 1.
8
Angular range, sampling and noise considerations for inverse light scattering analysis of nuclear morphology.
J Biophotonics. 2019 Feb;12(2):e201800258. doi: 10.1002/jbio.201800258. Epub 2018 Oct 12.
9
Scanning system for angle-resolved low-coherence interferometry.
Opt Lett. 2017 Nov 15;42(22):4581-4584. doi: 10.1364/OL.42.004581.

本文引用的文献

1
Wavelet transform fast inverse light scattering analysis for size determination of spherical scatterers.
Biomed Opt Express. 2014 Aug 29;5(10):3292-304. doi: 10.1364/BOE.5.003292. eCollection 2014 Oct 1.
2
Detection of intestinal dysplasia using angle-resolved low coherence interferometry.
J Biomed Opt. 2011 Oct;16(10):106002. doi: 10.1117/1.3631799.
4
Detection of dysplasia in Barrett's esophagus with in vivo depth-resolved nuclear morphology measurements.
Gastroenterology. 2011 Jan;140(1):42-50. doi: 10.1053/j.gastro.2010.09.008. Epub 2010 Sep 18.
5
Cancer nucleus: morphology and beyond.
Diagn Cytopathol. 2010 May;38(5):382-90. doi: 10.1002/dc.21234.
7
Determining nuclear morphology using an improved angle-resolved low coherence interferometry system.
Opt Express. 2003 Dec 15;11(25):3473-84. doi: 10.1364/oe.11.003473.
9
10
Liquid compared with conventional cervical cytology: a systematic review and meta-analysis.
Obstet Gynecol. 2008 Jan;111(1):167-77. doi: 10.1097/01.AOG.0000296488.85807.b3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验