Suppr超能文献

在慢性肾脏病中促使血管生成向纤维化转变。

Tipping the balance from angiogenesis to fibrosis in CKD.

作者信息

Ballermann Barbara J, Obeidat Marya

机构信息

Department of Medicine, University of Alberta , Edmonton, Alberta, Canada.

出版信息

Kidney Int Suppl (2011). 2014 Nov;4(1):45-52. doi: 10.1038/kisup.2014.9.

Abstract

Chronic progressive renal fibrosis leads to end-stage renal failure many patients with chronic kidney disease (CKD). Loss of the rich peritubular capillary network is a prominent feature, and seems independent of the specific underlying disease. The mechanisms that contribute to peritubular capillary regression include the loss of glomerular perfusion, as flow-dependent shear forces are required to provide the survival signal for endothelial cells. Also, reduced endothelial cell survival signals from sclerotic glomeruli and atrophic or injured tubule epithelial cells contribute to peritubular capillary regression. In response to direct tubular epithelial cell injury, and the inflammatory reaction that ensues, capillary pericytes dissociate from their blood vessels, also reducing endothelial cell survival. In addition, direct inflammatory injury of capillary endothelial cells, for instance in chronic allograft nephropathy, also contributes to capillary dropout. Chronic tissue hypoxia, which ensues from the rarefaction of the peritubular capillary network, can generate both an angiogenic and a fibrogenic response. However, in CKD, the balance is strongly tipped toward fibrogenesis. Understanding the underlying mechanisms for failed angiogenesis in CKD and harnessing endothelial-specific survival and pro-angiogenic mechanisms for therapy should be our goal if we are to reduce the disease burden from CKD.

摘要

慢性进行性肾纤维化导致许多慢性肾脏病(CKD)患者发展为终末期肾衰竭。丰富的肾小管周围毛细血管网的丧失是一个突出特征,且似乎与具体的潜在疾病无关。导致肾小管周围毛细血管消退的机制包括肾小球灌注丧失,因为依赖血流的剪切力是为内皮细胞提供存活信号所必需的。此外,硬化肾小球以及萎缩或受损的肾小管上皮细胞产生的内皮细胞存活信号减少,也促使肾小管周围毛细血管消退。针对肾小管上皮细胞的直接损伤以及随之而来的炎症反应,毛细血管周细胞与其血管分离,这也会降低内皮细胞的存活率。另外,毛细血管内皮细胞的直接炎性损伤,例如在慢性移植肾肾病中,也会导致毛细血管缺失。肾小管周围毛细血管网稀疏所导致的慢性组织缺氧,可引发血管生成和纤维化反应。然而,在CKD中,平衡明显倾向于纤维化。如果我们想要减轻CKD的疾病负担,了解CKD中血管生成失败的潜在机制并利用内皮细胞特异性存活和促血管生成机制进行治疗应是我们的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe12/4536966/263fc0c563f6/kisup20149f1.jpg

相似文献

1
Tipping the balance from angiogenesis to fibrosis in CKD.
Kidney Int Suppl (2011). 2014 Nov;4(1):45-52. doi: 10.1038/kisup.2014.9.
2
Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression.
Int J Mol Sci. 2020 Nov 4;21(21):8255. doi: 10.3390/ijms21218255.
4
Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease.
Pediatr Nephrol. 2014 Mar;29(3):333-42. doi: 10.1007/s00467-013-2430-y. Epub 2013 Mar 10.
5
Hypoxia and fibrosis in chronic kidney disease: crossing at pericytes.
Kidney Int Suppl (2011). 2014 Nov;4(1):107-112. doi: 10.1038/kisup.2014.20.
6
Hypoxia and Dysregulated Angiogenesis in Kidney Disease.
Kidney Dis (Basel). 2015 May;1(1):80-9. doi: 10.1159/000381515. Epub 2015 Apr 15.
7
Gli1 Pericyte Loss Induces Capillary Rarefaction and Proximal Tubular Injury.
J Am Soc Nephrol. 2017 Mar;28(3):776-784. doi: 10.1681/ASN.2016030297. Epub 2016 Sep 13.
8
Capillary rarefaction from the kidney point of view.
Clin Kidney J. 2018 Jun;11(3):295-301. doi: 10.1093/ckj/sfx133. Epub 2017 Nov 28.
9
Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation.
Biochem Biophys Res Commun. 2016 Sep 23;478(3):1074-9. doi: 10.1016/j.bbrc.2016.08.066. Epub 2016 Aug 12.
10
A mechanistic link between renal ischemia and fibrosis.
Med Mol Morphol. 2017 Mar;50(1):1-8. doi: 10.1007/s00795-016-0146-3. Epub 2016 Jul 20.

引用本文的文献

3
LncRNA TUG1 mitigates chronic kidney disease through miR-542-3p/HIF-1α/VEGF axis.
Heliyon. 2024 Dec 11;11(1):e40891. doi: 10.1016/j.heliyon.2024.e40891. eCollection 2025 Jan 15.
4
T cell metabolism in kidney immune homeostasis.
Front Immunol. 2024 Dec 16;15:1498808. doi: 10.3389/fimmu.2024.1498808. eCollection 2024.
5
Notch signaling regulates pulmonary fibrosis.
Front Cell Dev Biol. 2024 Oct 10;12:1450038. doi: 10.3389/fcell.2024.1450038. eCollection 2024.
6
Evaluation of the novel ALK5 inhibitor EW-7197 on therapeutic efficacy in renal fibrosis using a three-dimensional chip model.
Kidney Res Clin Pract. 2025 Jul;44(4):612-625. doi: 10.23876/j.krcp.23.324. Epub 2024 Sep 9.
7
Glial cell line-derived neurotrophic factor and its role in attenuating renal fibrosis: a review.
Korean J Intern Med. 2025 Mar;40(2):219-229. doi: 10.3904/kjim.2023.246. Epub 2023 Dec 13.
8
Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates.
Cureus. 2023 Oct 9;15(10):e46737. doi: 10.7759/cureus.46737. eCollection 2023 Oct.

本文引用的文献

1
Receptor tyrosine kinase-mediated angiogenesis.
Cold Spring Harb Perspect Biol. 2013 Sep 1;5(9):a009183. doi: 10.1101/cshperspect.a009183.
2
Hypoxia-inducible factor-2α and TGF-β signaling interact to promote normoxic glomerular fibrogenesis.
Am J Physiol Renal Physiol. 2013 Nov 1;305(9):F1323-31. doi: 10.1152/ajprenal.00155.2013. Epub 2013 Aug 14.
3
Apoptosis and angiogenesis: an evolving mechanism for fibrosis.
FASEB J. 2013 Oct;27(10):3893-901. doi: 10.1096/fj.12-214189. Epub 2013 Jun 19.
5
Transforming growth factor β family members in regulation of vascular function: in the light of vascular conditional knockouts.
Exp Cell Res. 2013 May 15;319(9):1264-70. doi: 10.1016/j.yexcr.2013.02.015. Epub 2013 Feb 27.
6
Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease.
Clin Exp Nephrol. 2013 Aug;17(4):488-97. doi: 10.1007/s10157-013-0781-0. Epub 2013 Feb 21.
7
Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis.
Am J Physiol Cell Physiol. 2013 Apr 1;304(7):C591-603. doi: 10.1152/ajpcell.00414.2012. Epub 2013 Jan 16.
8
Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis.
Curr Top Microbiol Immunol. 2013;367:3-32. doi: 10.1007/82_2012_287.
9
Can we target tubular damage to prevent renal function decline in diabetes?
Semin Nephrol. 2012 Sep;32(5):452-62. doi: 10.1016/j.semnephrol.2012.07.008.
10
"Sprouting angiogenesis", a reappraisal.
Dev Biol. 2012 Dec 15;372(2):157-65. doi: 10.1016/j.ydbio.2012.09.018. Epub 2012 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验