Suppr超能文献

KCNQ2/3和HCN通道的噪声诱导可塑性是耳鸣易感性和恢复力的基础。

Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus.

作者信息

Li Shuang, Kalappa Bopanna I, Tzounopoulos Thanos

机构信息

Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States.

出版信息

Elife. 2015 Aug 27;4:e07242. doi: 10.7554/eLife.07242.

Abstract

Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our results show that noise exposure induces, on average, a reduction in KCNQ2/3 channel activity in fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN channel activity. Our results highlight KCNQ2/3 and HCN channels as potential targets for designing novel therapeutics that may promote resilience to tinnitus.

摘要

对噪声性耳鸣的易感性与耳蜗背侧核主神经元(梭形细胞)自发放电率增加有关。这种活动亢进至少部分是由Kv7.2/3(KCNQ2/3)钾电流减少引起的。然而,在未出现耳鸣的噪声暴露小鼠(非耳鸣小鼠)中观察到的对耳鸣的恢复力背后的生物物理机制仍然未知。我们的结果表明,噪声暴露平均会导致噪声暴露小鼠的梭形细胞中KCNQ2/3通道活性在暴露后4天降低。在接下来3天内未补偿这种降低的小鼠会出现耳鸣。对耳鸣具有恢复力的小鼠表现为KCNQ2/3通道活性重新出现以及HCN通道活性降低。我们的结果突出了KCNQ2/3和HCN通道作为设计可能促进对耳鸣恢复力的新型疗法的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6434/4592936/c43264731a00/elife07242f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验