Suppr超能文献

通过纳米界面工程声子和电子-声子耦合。

Engineering Acoustic Phonons and Electron-Phonon Coupling by the Nanoscale Interface.

机构信息

Department of Physics and Center for Nanophysics and Advanced Materials and ‡Department of Electrical and Computer Engineering, University of Maryland , College Park, Maryland 20742, United States.

出版信息

Nano Lett. 2015 Sep 9;15(9):6282-8. doi: 10.1021/acs.nanolett.5b03227. Epub 2015 Aug 27.

Abstract

Precise engineering of phonon-phonon (ph-ph) and electron-phonon (e-ph) interactions by materials design is essential for an in-depth understanding of thermal, electrical, and optical phenomena as well as new technology breakthrough governed by fundamental physical laws. Due to their characteristic length scale, the ph-ph and e-ph interactions can be dramatically modified by nanoscale spatial confinement, thus opening up opportunities to finely maneuver underlying coupling processes through the interplay of confined size, fundamental length scale, and interface. We have combined ultrafast optical spectroscopy with a series of well-designed nanoscale core-shell structures possessing precisely tunable interface to demonstrate for the first time unambiguous experimental evidence of coherent interfacial phonon coupling between the core and shell constituents. Such interfacially coupled phonons can be impulsively excited through the e-ph interaction, in which the critical e-ph coupling constant is further shown to be monotonically controlled by tuning the configuration and constituent of core-shell nanostructure. Precise tunability of elemental physics processes through nanoscale materials engineering should not only offer fundamental insights into different materials properties but also facilitate design of devices possessing desirable functionality and property with rationally tailored nanostructures as building blocks.

摘要

通过材料设计精确调控声子-声子(ph-ph)和电子-声子(e-ph)相互作用对于深入理解热、电和光现象以及受基本物理定律控制的新技术突破至关重要。由于其特征长度尺度,纳米尺度的空间限制可以显著改变 ph-ph 和 e-ph 相互作用,从而为通过受限尺寸、基本长度尺度和界面的相互作用精细地控制潜在的耦合过程提供了机会。我们结合超快光学光谱学和一系列具有精确可调界面的精心设计的纳米级核壳结构,首次证明了在核和壳成分之间存在相干界面声子耦合的明确实验证据。这种界面耦合的声子可以通过 e-ph 相互作用被瞬间激发,其中进一步表明,通过调整核壳纳米结构的配置和成分,可以单调地控制关键的 e-ph 耦合常数。通过纳米材料工程对元素物理过程进行精确调控,不仅可以为不同的材料性质提供基本的见解,还可以通过合理设计具有所需功能和性能的纳米结构作为构建块来设计器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验