Department of Physics and Center for Nanophysics and Advanced Materials and ‡Department of Electrical and Computer Engineering, University of Maryland , College Park, Maryland 20742, United States.
Nano Lett. 2018 Feb 14;18(2):1124-1129. doi: 10.1021/acs.nanolett.7b04662. Epub 2018 Jan 9.
Understanding and controlling the phononic characteristics in solids is crucial to elucidate many physical phenomena and develop new phononic devices with optimal performance. Although substantial progress on the spatial control of phonons by material design has been achieved, the manipulation of phonons in the time domain has been less studied but can elucidate in-depth insight into various phonon-coupling processes. In this work, we explore different time-domain pump-control(s)-probe phonon manipulation schemes in both simulations and experiments with good consistency. In particular, we use an Au-Ag core-shell nanoparticle with a manifestation of multiple phonon vibrational modes as a model system for multimodal-phonon manipulation, and we demonstrate that the simple addition of a femtosecond optical control pulse to an all-optical pump-probe phonon measurement can enhance or suppress the fundamental breathing phonon mode of nanoparticles depending on the time separation between the pump and the control pulses. A more advanced control of the higher-order phonon modes and their interplay has also been achieved using two sequential and independently tunable optical control pulses, which enables the discriminatory modal manipulation of phonons for the first time. This work represents a significant step toward a deep understanding of the phonon-mediated physical and chemical processes and a development of new nanoscale materials with desirable functionalities and properties.
理解和控制固体中的声子特征对于阐明许多物理现象和开发具有最佳性能的新型声子器件至关重要。尽管通过材料设计在声子的空间控制方面已经取得了实质性的进展,但在时域中对声子的控制研究较少,但可以深入了解各种声子耦合过程。在这项工作中,我们通过模拟和实验探索了不同的时域泵控-探测声子操纵方案,结果具有很好的一致性。特别是,我们使用具有多种声子振动模式表现的 Au-Ag 核壳纳米粒子作为多模态声子操纵的模型系统,并证明在全光泵浦探测声子测量中简单地添加飞秒光控制脉冲可以根据泵浦和控制脉冲之间的时间间隔增强或抑制纳米粒子的基本呼吸声子模式。通过两个顺序且独立可调谐的光控制脉冲,还实现了对高阶声子模式及其相互作用的更先进的控制,这首次实现了对声子的区分模态操纵。这项工作代表着在深入理解声子介导的物理和化学过程以及开发具有理想功能和性能的新型纳米材料方面迈出了重要的一步。