Felderhof B U
Institut für Theorie der Statistischen Physik, RWTH Aachen University, Templergraben 55, 52056, Aachen, Germany,
Eur Phys J E Soft Matter. 2015 Aug;38(8):90. doi: 10.1140/epje/i2015-15090-7. Epub 2015 Aug 28.
The swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent is studied in low-Reynolds-number hydrodynamics. The instantaneous swimming velocity and rate of dissipation are expressed in terms of the time-dependent displacements of sphere centers about their collective motion. For small-amplitude swimming with periodically oscillating displacements, optimization of the mean swimming speed at given mean power leads to an eigenvalue problem involving a velocity matrix and a power matrix. The corresponding optimal stroke permits generalization to large-amplitude motion in a model of spheres with harmonic interactions and corresponding actuating forces. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres. A model of three collinear spheres with motion along the common axis is studied as an example.
在低雷诺数流体动力学中,研究了浸没在无限大粘性流体中的刚性球体集合的游动。瞬时游动速度和耗散率根据球体中心围绕其集体运动的随时间变化的位移来表示。对于具有周期性振荡位移的小振幅游动,在给定平均功率下对平均游动速度进行优化会导致一个涉及速度矩阵和功率矩阵的特征值问题。相应的最优冲程允许推广到具有谐波相互作用和相应驱动力的球体模型中的大振幅运动。该方法允许直接计算建模为相互作用刚性球体集合的结构的游动性能。以沿公共轴运动的三个共线球体模型为例进行了研究。