Suppr超能文献

液晶中瞬态游动的最小模型。

Minimal model for transient swimming in a liquid crystal.

作者信息

Krieger Madison S, Dias Marcelo A, Powers Thomas R

机构信息

School of Engineering, Brown University, 02912, Providence, RI, USA,

出版信息

Eur Phys J E Soft Matter. 2015 Aug;38(8):94. doi: 10.1140/epje/i2015-15094-3. Epub 2015 Aug 31.

Abstract

When a microorganism begins swimming from rest in a Newtonian fluid such as water, it rapidly attains its steady-state swimming speed since changes in the velocity field spread quickly when the Reynolds number is small. However, swimming microorganisms are commonly found or studied in complex fluids. Because these fluids have long relaxation times, the time to attain the steady-state swimming speed can also be long. In this article we study the swimming startup problem in the simplest liquid crystalline fluid: a two-dimensional hexatic liquid crystal film. We study the dependence of startup time on anchoring strength and Ericksen number, which is the ratio of viscous to elastic stresses. For strong anchoring, the fluid flow starts up immediately but the liquid crystal field and swimming velocity attain their sinusoidal steady-state values after a time proportional to the relaxation time of the liquid crystal. When the Ericksen number is high, the behavior is the same as in the strong-anchoring case for any anchoring strength. We also find that the startup time increases with the ratio of the rotational viscosity to the shear viscosity, and then ultimately saturates once the rotational viscosity is much greater than the shear viscosity.

摘要

当微生物在诸如水这样的牛顿流体中从静止开始游动时,由于当雷诺数较小时速度场的变化传播很快,它会迅速达到其稳态游动速度。然而,游动的微生物通常存在于或被研究于复杂流体中。因为这些流体具有很长的弛豫时间,达到稳态游动速度的时间也可能很长。在本文中,我们研究最简单的液晶流体——二维六次液晶膜中的游动启动问题。我们研究启动时间对锚定强度和埃里克森数的依赖性,埃里克森数是粘性应力与弹性应力之比。对于强锚定,流体流动立即启动,但液晶场和游动速度在与液晶弛豫时间成比例的时间后达到其正弦稳态值。当埃里克森数较高时,对于任何锚定强度,其行为与强锚定情况相同。我们还发现,启动时间随着旋转粘度与剪切粘度之比的增加而增加,然后一旦旋转粘度远大于剪切粘度,启动时间最终会饱和。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验