Suppr超能文献

基于结构和配体的整合计算机模拟方法预测细胞色素P450 2D6的抑制作用。

Integrated structure- and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6.

作者信息

Martiny Virginie Y, Carbonell Pablo, Chevillard Florent, Moroy Gautier, Nicot Arnaud B, Vayer Philippe, Villoutreix Bruno O, Miteva Maria A

机构信息

Université Paris Diderot, Sorbonne Paris Cité, UMR-S 973 Inserm, Paris 75013, France, Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France.

Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.

出版信息

Bioinformatics. 2015 Dec 15;31(24):3930-7. doi: 10.1093/bioinformatics/btv486. Epub 2015 Aug 26.

Abstract

MOTIVATION

Cytochrome P450 (CYP) is a superfamily of enzymes responsible for the metabolism of drugs, xenobiotics and endogenous compounds. CYP2D6 metabolizes about 30% of drugs and predicting potential CYP2D6 inhibition is important in early-stage drug discovery.

RESULTS

We developed an original in silico approach for the prediction of CYP2D6 inhibition combining the knowledge of the protein structure and its dynamic behavior in response to the binding of various ligands and machine learning modeling. This approach includes structural information for CYP2D6 based on the available crystal structures and molecular dynamic simulations (MD) that we performed to take into account conformational changes of the binding site. We performed modeling using three learning algorithms--support vector machine, RandomForest and NaiveBayesian--and we constructed combined models based on topological information of known CYP2D6 inhibitors and predicted binding energies computed by docking on both X-ray and MD protein conformations. In addition, we identified three MD-derived structures that are capable all together to better discriminate inhibitors and non-inhibitors compared with individual CYP2D6 conformations, thus ensuring complementary ligand profiles. Inhibition models based on classical molecular descriptors and predicted binding energies were able to predict CYP2D6 inhibition with an accuracy of 78% on the training set and 75% on the external validation set.

摘要

动机

细胞色素P450(CYP)是一类负责药物、外源性物质和内源性化合物代谢的酶超家族。CYP2D6参与约30%的药物代谢,在药物研发早期预测潜在的CYP2D6抑制作用具有重要意义。

结果

我们开发了一种原创的计算机模拟方法来预测CYP2D6抑制作用,该方法结合了蛋白质结构知识及其对各种配体结合的动态行为以及机器学习建模。这种方法包括基于可用晶体结构的CYP2D6结构信息以及我们进行的分子动力学模拟(MD),以考虑结合位点的构象变化。我们使用三种学习算法——支持向量机、随机森林和朴素贝叶斯——进行建模,并基于已知CYP2D6抑制剂的拓扑信息和通过对接X射线和MD蛋白质构象计算得到的预测结合能构建了组合模型。此外,我们鉴定出三种源自MD的结构,与单个CYP2D6构象相比,它们能够共同更好地区分抑制剂和非抑制剂,从而确保互补的配体谱。基于经典分子描述符和预测结合能的抑制模型在训练集上预测CYP2D6抑制作用的准确率为78%,在外部验证集上为75%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验