Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Rd., Front Royal, VA, 22630, USA.
Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, 1101 W. Peabody, Suite 350 (NSRC), MC-635, Urbana, IL, 61801, USA.
Glob Chang Biol. 2016 Jan;22(1):351-63. doi: 10.1111/gcb.13077. Epub 2015 Nov 18.
Regenerating forests influence the global carbon (C) cycle, and understanding how climate change will affect patterns of regeneration and C storage is necessary to predict the rate of atmospheric carbon dioxide (CO2 ) increase in future decades. While experimental elevation of CO2 has revealed that young forests respond with increased productivity, there remains considerable uncertainty as to how the long-term dynamics of forest regrowth are shaped by elevated CO2 (eCO2 ). Here, we use the mechanistic size- and age- structured Ecosystem Demography model to investigate the effects of CO2 enrichment on forest regeneration, using data from the Duke Forest Free-Air Carbon dioxide Enrichment (FACE) experiment, a forest chronosequence, and an eddy-covariance tower for model parameterization and evaluation. We find that the dynamics of forest regeneration are accelerated, and stands consistently hit a variety of developmental benchmarks earlier under eCO2 . Because responses to eCO2 varied by plant functional type, successional pathways, and mature forest composition differed under eCO2 , with mid- and late-successional hardwood functional types experiencing greater increases in biomass compared to early-successional functional types and the pine canopy. Over the simulation period, eCO2 led to an increase in total ecosystem C storage of 9.7 Mg C ha(-1) . Model predictions of mature forest biomass and ecosystem-atmosphere exchange of CO2 and H2 O were sensitive to assumptions about nitrogen limitation; both the magnitude and persistence of the ecosystem response to eCO2 were reduced under N limitation. In summary, our simulations demonstrate that eCO2 can result in a general acceleration of forest regeneration while altering the course of successional change and having a lasting impact on forest ecosystems.
森林再生会影响全球碳(C)循环,了解气候变化将如何影响再生和 C 储存模式,对于预测未来几十年大气二氧化碳(CO2)增加的速度是必要的。虽然实验中升高 CO2 表明年轻的森林会增加生产力,但对于长期来看,CO2 升高(eCO2)如何塑造森林再生的动态,仍存在相当大的不确定性。在这里,我们使用基于机制的大小和年龄结构生态系统动态模型,利用杜克森林大气二氧化碳免费空气增浓(FACE)实验、森林时间序列和涡度协方差塔的数据,来研究 CO2 富集对森林再生的影响,以进行模型参数化和评估。我们发现,森林再生的动态加速了,并且在 eCO2 下,森林会提前达到各种不同的发展基准。因为对 eCO2 的响应因植物功能类型、演替途径和成熟林组成的不同而有所不同,中晚生的硬木功能类型的生物量比早生的功能类型和松冠层有更大的增加。在模拟期间,eCO2 导致总生态系统 C 储存增加了 9.7 Mg C ha(-1)。对成熟林生物量和生态系统-大气 CO2 和 H2O 交换的模型预测对氮限制的假设敏感;在氮限制下,生态系统对 eCO2 的响应的幅度和持久性都降低了。总之,我们的模拟表明,eCO2 可以导致森林再生的普遍加速,同时改变演替变化的过程,并对森林生态系统产生持久的影响。