Nanomaterials Laboratory, Inorganic and Physical Chemistry Division, and ‡Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India.
ACS Appl Mater Interfaces. 2015 Sep 9;7(35):19684-90. doi: 10.1021/acsami.5b04820. Epub 2015 Aug 28.
A bio-inspired approach for the fabrication of reduced graphene oxide (rGO) embedded ZnO nanostructure has been attempted to address issues pertaining to charge recombination and photocorrosion in ZnO for application as an effective photocatalyst. Herein we demonstrate the synthesis of rGO-ZnO nanostructures in a single step using polyamines, which simultaneously aid in the mineralization of ZnO nanostructures from zinc nitrate, reduction of graphene oxide (GO), and finally their assembly to form rGO-ZnO composite structures under environmentally benign conditions. The interspersed nanocomponents in the assembled heterostructures result in enhanced photocatalytic activity under UV light, indicating an effective charge separation of the excited electrons. Furthermore, the composite structure provides stability against photocorrosion for efficient recyclability of the catalyst.
已经尝试了一种生物启发的方法来制造嵌入还原氧化石墨烯(rGO)的氧化锌(ZnO)纳米结构,以解决 ZnO 在应用为有效光催化剂时存在的电荷复合和光腐蚀问题。在这里,我们展示了使用多胺在一步中合成 rGO-ZnO 纳米结构,该方法同时有助于从硝酸锌中矿化 ZnO 纳米结构、还原氧化石墨烯(GO),并最终在环境友好的条件下将它们组装形成 rGO-ZnO 复合结构。组装的异质结构中的交错纳米组件在紫外光下表现出增强的光催化活性,表明激发电子的有效电荷分离。此外,该复合材料结构提供了对光腐蚀的稳定性,实现了催化剂的高效可回收性。