Lykov Kirill, Li Xuejin, Lei Huan, Pivkin Igor V, Karniadakis George Em
Institute of Computational Science, Faculty of Informatics, University of Lugano, Lugano, Switzerland.
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America.
PLoS Comput Biol. 2015 Aug 28;11(8):e1004410. doi: 10.1371/journal.pcbi.1004410. eCollection 2015 Aug.
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the "all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis model.
当血液流经分叉处时,红细胞会以不同的血细胞比容水平进入侧支,甚至有可能所有红细胞仅进入一个分支,导致血浆和红细胞完全分离。为了通过基于粒子的介观模拟来量化这种现象,我们开发了一种用于多相流开放边界条件的通用框架,该框架即使在高血细胞比容水平下也有效。入口处的流入量是从具有周期性边界条件的先导模拟中生成的充分发展的流中复制而来的。流出量由自适应力控制,以将流速和速度梯度维持在固定值,而在出口处离开小动脉的粒子则从系统中移除。在验证了这种方法之后,我们进行了系统的三维模拟,以研究直径为20至32微米的小动脉中的血浆撇除现象。对于分支处的流量比为6:1的情况,我们观察到了“全有或全无”现象,即只有血浆进入低流量分支。然后,我们模拟了具有不同分叉角度和相同子分支直径的小动脉分叉处的血液 - 血浆分离。我们的模拟预测,随着分叉角度增大,通过主要子分支的红细胞通量会显著增加。最后,我们证明了这种新方法在使用血管生成模型构建的具有多个入口和出口的血管中的血流模拟中的有效性。