Suppr超能文献

超声辅助下高效同步吸附亮绿和曙红B于负载硫化锌纳米颗粒的活性炭上:人工神经网络建模及中心复合设计优化

Highly efficient simultaneous ultrasonic assisted adsorption of brilliant green and eosin B onto ZnS nanoparticles loaded activated carbon: Artificial neural network modeling and central composite design optimization.

作者信息

Jamshidi M, Ghaedi M, Dashtian K, Ghaedi A M, Hajati S, Goudarzi A, Alipanahpour E

机构信息

Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.

Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2016 Jan 15;153:257-67. doi: 10.1016/j.saa.2015.08.024. Epub 2015 Aug 17.

Abstract

In this work, central composite design (CCD) combined with response surface methodology (RSM) and desirability function approach (DFA) gives useful information about operational condition and also to obtain useful information about interaction and main effect of variables concerned to simultaneous ultrasound-assisted removal of brilliant green (BG) and eosin B (EB) by zinc sulfide nanoparticles loaded on activated carbon (ZnS-NPs-AC). Spectra overlap between BG and EB dyes was extensively reduced and/or omitted by derivative spectrophotometric method, while multi-layer artificial neural network (ML-ANN) model learned with Levenberg-Marquardt (LM) algorithm was used for building up a predictive model and prediction of the BG and EB removal. The ANN efficiently was able to forecast the simultaneous BG and EB removal that was confirmed by reasonable numerical value i.e. MSE of 0.0021 and R(2) of 0.9589 and MSE of 0.0022 and R(2) of 0.9455 for testing data set, respectively. The results reveal acceptable agreement among experimental data and ANN predicted results. Langmuir as the best model for fitting experimental data relevant to BG and EB removal indicates high, economic and profitable adsorption capacity (258.7 and 222.2 mg g(-1)) that supports and confirms its applicability for wastewater treatment.

摘要

在本研究中,中心复合设计(CCD)结合响应面法(RSM)和期望函数法(DFA),不仅能提供有关操作条件的有用信息,还能获取关于负载在活性炭上的硫化锌纳米颗粒(ZnS-NPs-AC)同时超声辅助去除亮绿(BG)和曙红B(EB)相关变量的相互作用和主要效应的有用信息。采用导数分光光度法可大幅减少和/或消除BG和EB染料之间的光谱重叠,同时使用基于Levenberg-Marquardt(LM)算法训练的多层人工神经网络(ML-ANN)模型来建立预测模型并预测BG和EB的去除情况。人工神经网络能够有效地预测BG和EB的同时去除,测试数据集的合理数值证实了这一点,即均方误差(MSE)为0.0021,决定系数(R²)为0.9589,以及测试数据集的MSE为0.0022,R²为0.9455。结果表明实验数据与人工神经网络预测结果之间具有可接受的一致性。Langmuir作为拟合与BG和EB去除相关实验数据的最佳模型,表明其具有较高的、经济且有利可图 的吸附容量(分别为258.7和222.2 mg g⁻¹),这支持并证实了其在废水处理中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验