McCarthy Brian A, Yancopoulos Sophia, Tipping Mike, Yan Xiao-Jie, Wang Xue Ping, Bennett Fiona, Li Wentian, Lesser Martin, Paul Santanu, Boyle Erin, Moreno Carolina, Catera Rosa, Messmer Bradley T, Cutrona Giovanna, Ferrarini Manlio, Kolitz Jonathan E, Allen Steven L, Rai Kanti R, Rawstron Andrew C, Chiorazzi Nicholas
The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA.
Vector Anomaly, Suffolk, IP23 8HB, UK.
Immunol Res. 2015 Dec;63(1-3):90-100. doi: 10.1007/s12026-015-8688-3.
Chronic lymphocytic leukemia (CLL) is a clonal disease of B lymphocytes manifesting as an absolute lymphocytosis in the blood. However, not all lymphocytoses are leukemic. In addition, first-degree relatives of CLL patients have an ~15 % chance of developing a precursor condition to CLL termed monoclonal B cell lymphocytosis (MBL), and distinguishing CLL and MBL B lymphocytes from normal B cell expansions can be a challenge. Therefore, we selected FMOD, CKAP4, PIK3C2B, LEF1, PFTK1, BCL-2, and GPM6a from a set of genes significantly differentially expressed in microarray analyses that compared CLL cells with normal B lymphocytes and used these to determine whether we could discriminate CLL and MBL cells from B cells of healthy controls. Analysis with receiver operating characteristics and Bayesian relevance determination demonstrated good concordance with all panel genes. Using a random forest classifier, the seven-gene panel reliably distinguished normal polyclonal B cell populations from expression patterns occurring in pre-CLL and CLL B cell populations with an error rate of 2 %. Using Bayesian learning, the expression levels of only two genes, FMOD and PIK3C2B, correctly distinguished 100 % of CLL and MBL cases from normal polyclonal and mono/oligoclonal B lymphocytes. Thus, this study sets forth effective computational approaches that distinguish MBL/CLL from normal B lymphocytes. The findings also support the concept that MBL is a CLL precursor.
慢性淋巴细胞白血病(CLL)是一种B淋巴细胞的克隆性疾病,表现为血液中绝对淋巴细胞增多。然而,并非所有淋巴细胞增多都是白血病性的。此外,CLL患者的一级亲属有~15%的几率发展为CLL的前驱疾病,即单克隆B细胞淋巴细胞增多症(MBL),而将CLL和MBL的B淋巴细胞与正常B细胞扩增区分开来可能具有挑战性。因此,我们从一组在将CLL细胞与正常B淋巴细胞进行比较的微阵列分析中显著差异表达的基因中选择了FMOD、CKAP4、PIK3C2B、LEF1、PFTK1、BCL-2和GPM6a,并使用这些基因来确定我们是否能够将CLL和MBL细胞与健康对照的B细胞区分开来。通过受试者工作特征分析和贝叶斯相关性测定表明,所有基因组合均具有良好的一致性。使用随机森林分类器,七基因组合能够可靠地将正常多克隆B细胞群体与CLL前期和CLL B细胞群体中出现的表达模式区分开来,错误率为2%。使用贝叶斯学习,仅FMOD和PIK3C2B这两个基因的表达水平就能将100%的CLL和MBL病例与正常多克隆和单/寡克隆B淋巴细胞正确区分开来。因此,本研究提出了区分MBL/CLL与正常B淋巴细胞的有效计算方法。这些发现也支持MBL是CLL前驱疾病的概念。