The Ohio State University, Department of Biomedical Informatics, Columbus, OH, United States.
JMIR Med Inform. 2015 Aug 31;3(3):e28. doi: 10.2196/medinform.3982.
Systematic reviews and their implementation in practice provide high quality evidence for clinical practice but are both time and labor intensive due to the large number of articles. Automatic text classification has proven to be instrumental in identifying relevant articles for systematic reviews. Existing approaches use machine learning model training to generate classification algorithms for the article screening process but have limitations.
We applied a network approach to assist in the article screening process for systematic reviews using predetermined article relationships (similarity). The article similarity metric is calculated using the MEDLINE elements title (TI), abstract (AB), medical subject heading (MH), author (AU), and publication type (PT). We used an article network to illustrate the concept of article relationships. Using the concept, each article can be modeled as a node in the network and the relationship between 2 articles is modeled as an edge connecting them. The purpose of our study was to use the article relationship to facilitate an interactive article recommendation process.
We used 15 completed systematic reviews produced by the Drug Effectiveness Review Project and demonstrated the use of article networks to assist article recommendation. We evaluated the predictive performance of MEDLINE elements and compared our approach with existing machine learning model training approaches. The performance was measured by work saved over sampling at 95% recall (WSS95) and the F-measure (F1). We also used repeated analysis over variance and Hommel's multiple comparison adjustment to demonstrate statistical evidence.
We found that although there is no significant difference across elements (except AU), TI and AB have better predictive capability in general. Collaborative elements bring performance improvement in both F1 and WSS95. With our approach, a simple combination of TI+AB+PT could achieve a WSS95 performance of 37%, which is competitive to traditional machine learning model training approaches (23%-41% WSS95).
We demonstrated a new approach to assist in labor intensive systematic reviews. Predictive ability of different elements (both single and composited) was explored. Without using model training approaches, we established a generalizable method that can achieve a competitive performance.
系统评价及其在实践中的实施为临床实践提供了高质量的证据,但由于文章数量众多,既费时又费力。自动文本分类已被证明可用于识别系统评价的相关文章。现有的方法使用机器学习模型训练来生成文章筛选过程的分类算法,但存在局限性。
我们应用网络方法,利用系统评价中预先确定的文章关系(相似性)来辅助文章筛选。使用 MEDLINE 元素标题(TI)、摘要(AB)、医学主题词(MH)、作者(AU)和出版类型(PT)来计算文章相似度。我们使用文章网络来说明文章关系的概念。通过这个概念,每篇文章都可以建模为网络中的一个节点,两篇文章之间的关系建模为连接它们的边。我们研究的目的是利用文章关系来促进交互式文章推荐过程。
我们使用了 15 项由药物疗效评价项目完成的系统评价,展示了使用文章网络来辅助文章推荐的方法。我们评估了 MEDLINE 元素的预测性能,并将我们的方法与现有的机器学习模型训练方法进行了比较。性能通过在 95%召回率(WSS95)下节省的工作(WSS95)和 F 分数(F1)来衡量。我们还使用方差重复分析和 Hommel 多重比较调整来证明统计证据。
我们发现,虽然除了 AU 之外,各个元素之间没有显著差异,但 TI 和 AB 总体上具有更好的预测能力。协作元素在 F1 和 WSS95 方面都能提高性能。使用我们的方法,简单地将 TI+AB+PT 组合起来,就可以达到 37%的 WSS95 性能,这与传统的机器学习模型训练方法(23%-41%的 WSS95)具有竞争力。
我们展示了一种新的方法来辅助劳动密集型系统评价。我们探索了不同元素(单个和组合)的预测能力。在不使用模型训练方法的情况下,我们建立了一种可推广的方法,可以达到有竞争力的性能。