School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
Nanoscale. 2015 Oct 7;7(37):15284-90. doi: 10.1039/c5nr03476k.
We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.
我们展示了使用一维(1D)电子传输层(ETL)具有优异电子传输性能的高效钙钛矿太阳能电池。基于一维阵列的 ETL 由在 F:SnO2 透明导电氧化物衬底上生长的一维 SnO2 纳米线(NWs)阵列和在一维 SnO2 NWs 表面外延生长的锐钛矿 TiO2 纳米壳组成。优化后的器件在 750nm 处的内量子产率超过 95%,功率转换效率(PCE)为 14.2%。高量子产率归因于与传统基于纳米颗粒的介孔 TiO2(mp-TiO2)层相比,在外延 TiO2 层中电子传输得到了显著增强。此外,基于一维阵列的 ETL 中的开放空间增加了均匀 TiO2/钙钛矿结的出现,从而实现了具有高填充因子的可重现器件性能。这项工作提供了一种实现具有高速电子传输的可重现、高效钙钛矿太阳能电池的方法。