Świderek Katarzyna, Marti Sergio, Tuñón Iñaki, Moliner Vicent, Bertran Juan
Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castellón Spain.
Institute of Applied Radiation Chemistry, Lodz University of Technology , 90-924 Lodz, Poland.
J Am Chem Soc. 2015 Sep 23;137(37):12024-34. doi: 10.1021/jacs.5b05916. Epub 2015 Sep 10.
In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favorable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708-8719), but the reaction mechanisms are noticeably different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behavior of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system.
在本文中,我们展示了一项关于核糖体催化肽键形成反应的研究。我们借助混合量子力学/分子力学(QM/MM)势能下的自由能微扰方法,探索了不同的反应机理,其中化学体系采用M06 - 2X泛函进行描述,环境则通过AMBER力场来描述。根据我们的结果,核糖体中最有利的反应机理将通过一个八元环过渡态进行,该过渡态涉及通过糖的羟基和一个水分子的质子穿梭机制。这个过渡态与溶液中反应所描述的过渡态相似(《美国化学会志》2013年,135卷,8708 - 8719页),但反应机理明显不同。我们的模拟重现了实验测定的核糖体催化效应,这可以通过两种环境的不同行为来解释。在涉及熵罚的化学过程中,溶剂会发生重组,而核糖体在米氏复合物形成过程中是预先组织好的,并且在反应过程中不会发生重大变化,从而抑制了化学体系的电荷重新分布。